Зарядное устройство для li ion батарей. Зарядное устройство для литиевых аккумуляторов

Зарядное устройство для li ion батарей. Зарядное устройство для литиевых аккумуляторов
Зарядное устройство для li ion батарей. Зарядное устройство для литиевых аккумуляторов

У многих, наверное, возникает проблема с зарядкой Li-Ion аккумулятора без контроллера, у меня возникла такая ситуация. Достался убитый ноутбук, в аккумуляторе 4 банки SANYO UR18650A оказались живые.
Решил заменить в светодиодном фонарике, вместо трех батареек ААА. Встал вопрос об их зарядке.
Покопавшись в инете нашел кучу схемок, но с деталями у нас в городе туговато.
Пробовал заряжать от зарядки сотового, проблема в контроле заряда, нужно постоянно следить за нагревом, чуть начинает нагреваться нужно отключать от зарядки иначе аккумулятору каюк в лучшем случае, а то и можно устроить пожар.
Решил сделать самостоятельно. Купил в магазине постельку под аккумулятор. На барахолке купил зарядку. Для удобства отслеживания окончания заряда желательно найти с двухцветным светодиодом который сигнализирует о конце заряда. Он переключается с красного на зеленый при окончании зарядки.
Но можно и обычную. Зарядку можно заменить на шнур USB, и заряжать от компьютера или зарядки с USB выходом.
Моя зарядка только для аккумуляторов без контроллера. Контроллер я взял от старого аккумулятора сотового телефона. Она следит за тем, чтобы аккумулятор не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания.
На нем стоят микросхема DW01 и сборка двух MOSFET-транзисторов (M1,M2) SM8502A. Есть и с другими маркировками, но схемы подобны этой, и работает аналогично.

Контроллер заряда от аккумулятора сотового телефона.


Схема контроллера.


Ещё одна схема контроллера.
Главное не перепутать полярность припайки контроллера с постелькой и контроллера с зарядкой. На платке контроллера указаны контакты «+» и «-» .



В постельке возле плюсового контакта желательно сделать явно заметный указатель, красной краской или самоклеющейся пленкой, во избежание переполюсовки.
Собрал всё воедино и вот что получилось.



Заряжает замечательно. При достижении напряжения 4,2 вольта контроллер отключает аккумулятор от зарядки, и переключается светодиод с красного на зелёный. Зарядка закончена. Заряжать можно и другие Li-Ion аккумуляторы, только применить другую постельку. Всем удачи.


Li-ion аккумуляторы типа 18650 различной емкости получили в настоящее время очень широкое распространение. С их приобретением встает проблема зарядки и обязательно в соответствии с техническими требованиями к процессу зарядки. Вот некоторые из этих требований:
- зарядка стабильным током;
- режим стабилизации напряжения;
- индикация окончания зарядки;
- непревышение допустимой температуры в процессе зарядки аккумулятора.

Вашему вниманию предлагается несложная в изготовлении и наладке схема ЗУ Li-ion аккумуляторов, хорошо зарекомендовавшая себя в работе.

Схема представляет собой стабилизатор тока и напряжения. Пока напряжение на аккумуляторе в процессе зарядки не достигнет уровня Uстаб.=(R7/R5+1)*Uref (Uref-опорное напряжение TL431=2,5В), TL431 находится в закрытом состоянии, и схема работает как стабилизатор тока. Iстаб.=0,6/R2 (0,6-напряжение открывания транзистора КТ816В). Как только напряжение на аккумуляторе достигнет Uстаб., схема переходит в режим стабилизации напряжения. Для Li-ion аккумулятора эта величина равна 4,2В. По достижении на аккумуляторе напряжения 4,2В начинает светиться светодиод желтого цвета, сигнализируя о том, что аккумулятор заряжен на 80-90%.Зарядный ток снижается до величины 7…8мА. В этом состоянии оставьте аккумулятор на 10-15 часов, чтобы он набрал полную емкость.

Немного о назначении элементов схемы.
LED1 - синего цвета, светится при установке аккумулятора (АК) в зарядный бокс при неподключенном питании ЗУ. При напряжении на АК менее 3В LED1 не светится.
LED2 - желтого цвета. Служит для индикации окончания процесса зарядки АК. При установке в бокс незаряженного АК LED2 не светится. Если он светится, то это говорит о том, что в бокс вставлен заряженный АК (при неподключенном питании ЗУ).
R2 - ограничивает зарядный ток АК.
R5, R7 - служат для установки напряжения 4,2В на контактах зарядного бокса до установки в него аккумулятора (можно любым).

Все детали ЗУ, кроме транзистора, установлены на печатной плате со стороны печатных проводников:

Вариант платы для тех, кто не ленится сверлить отверстия в стеклотекстолите:

Транзистор снабжен небольшим радиатором. В процессе зарядки транзистор греется до 40°С. Резистор R2 также греется, поэтому лучше установить параллельно два по 10 Ом для уменьшения нагрева.
Напряжение блока питания для зарядки одного аккумулятора примерно 5В постоянного тока. При необходимости заряжать сразу несколько аккумуляторов напряжение БП выбирается таким, чтобы на каждом блоке оно составляло 4,2В. Мощность блока питания выбирается из величины зарядного тока для каждого аккумулятора. Можно использовать импульсный источник питания. Габариты зарядного устройства будут меньше.
Процесс наладки зарядного устройства несложен. Не вставляя аккумулятор, подаем питание на схему. Должны светиться оба светодиода. Далее измеряем напряжение на контактах зарядного бокса. Если оно равно 4,2В, вам повезло и наладка почти завершена. В случае, если напряжение больше или меньше 4,2В, отключаем питание, вместо резистора R5 или R7 впаиваем переменный многооборотный резистор 10к и точно устанавливаем напряжение 4,2В на контактах бокса. Измерив величину получившегося сопротивления настоечного резистора, подбираем такой же постоянный и впаиваем в схему. Еще раз проверяем напряжение на контактах зарядного бокса. Величину зарядного тока проверяем амперметром на контактах зарядного бокса, не вставляя аккумулятор. Подбором величины резистора R2 можно установить желаемый зарядный ток. Большими токами не увлекаемся, может греться аккумулятор, что категорически недопустимо. От перегрева емкость Li-ion аккумуляторов снижается и не восстанавливается.
Аккумуляторы лучше всего заряжать по одному. При необходимости заряжать одновременно несколько аккумуляторов можно соединить блоки последовательно по такой схеме.

В этой схеме каждый аккумулятор заряжается отдельно. Напряжение в конце зарядки на каждом АК будет 4,2В, а зарядный ток - 0,5А. Заряжая одновременно, например, семь аккумуляторов, напряжение источника питания должно быть 4.2В*7=29,5В. Мощность источника питания определяется по величине зарядного тока 0,5А для каждого АК, т.е приблизительно 40Вт.

Фото готового устройства.

На сегодняшний день литий ионные аккумуляторы являются самыми эффективными аккумуляторами. Они компактные, имеют большую энергоемкость, лишены эффекта памяти. При всех достоинствах у них имеется один существенный недостаток, их работу и процесс заряда нужно тщательно контролировать. Если аккумулятор разрядится ниже некоторого предела или перезарядить, он быстро теряет свои свойства, вздуться и даже взорваться. Тоже самое и в случае перегрузки и коротких замыканиях - нагрев, образование газов и в итоге взрыв.

Некоторые литий ионных аккумуляторы снабжены предохранительным клапаном, который не даст аккумулятору взорваться, но большая часть мощных полимерных аккумуляторов таких клапанов не имеют.

Другими словами, при эксплуатации литий ионных аккумуляторов требуется система их защиты.

Многие наверняка заметили маленькие платы в аккумуляторах мобильных телефонов, вот как раз эта плата и является защитой. Защищает она от глубкого разряда, от перезаряда и от коротких замыканий или перегрузок по току.


Схема этой защиты очень простая, на плате находиться пара микросхем с мелочевкой.

За всеми процессами следит микросхема DW01. Вторая микросхема - это сборка из двух полевых транзисторов. Первый транзистор контролирует процесс разряда, второй отвечает за заряд батареи.

Во время разряда микросхема следит за падением напряжения на переходах полевых ключей, если оно доходит до критической величины (150-200мВ), микросхема закрывает транзисторы, отключая батарею от нагрузки. Работа схемы восстанавливается менее чем за секунду после того, после снятия нагрузки.

Падение напряжение на переходах транзисторов микросхема отслеживает через второй вывод.

В зависимости от емкости аккумулятора эти контроллеры могут кардинально отличаться внешним видом, током короткого замыкания и топологией схемы, но функция у них всегда одинаковая - защищать аккумулятор от перезаряда, глубокого разряда и перегрузки по току. Многие контроллеры также обеспечивают защиту от перегрева банки, контроль температуры осуществляется термодатчиком.

У меня скопилось очень много плат защиты от аккумуляторов мобильных телефонов и как раз для одного моего проекта в котором задействован литий ионный аккумулятор понадобилась система защиты. Проблема в том, что эти платы рассчитаны на максимальный ток в 1Ампер, а мне нужна была плата с током минимум 6-7 Ампер. Платы с нужным для моих целей током стоят меньше пол доллара, но ждать месяц-другой я не мог. Осмотрев китайские платы на алиэкспресс я понял, что они не многим отличаются от моих. Схематика та же, только ток защиты побольше за счёт параллельного включения силовых транзисторов.

При параллельном соединении полевых транзисторов, сопротивление их каналов будет значительно меньше, поэтому падение напряжения на них будет меньше, а ток срабатывания защиты будет больше. Параллельное соединение ключей даст возможность коммутировать большие токи, чем больше ключей, тем больше общий ток коммутации.


В схеме применены стандартные сборки из двух полевиков в одном корпусе. Их часто применяют на платах защиты аккумуляторов смартфонов и не только.

Сборки 8205А имеют очень много аналогов, как и микросхемы контроля DW01.

После сборки платы я протестировал её. Получилось именно то, что мне нужно для проекта:

  • Плата заряжает аккумулятор до напряжения 4,2В и отключает его от зарядного устройства;
  • При разряде аккумулятора ниже 2,5В аккумулятор отключился от нагрузки;
  • При токах выше 12-13 Ампер аккумулятор отключается.

Литий ионные аккумуляторы имеют малый саморазряд, но аккумулятор дополненный такой платой будет разряжаться быстрее, чем аккумулятор без защиты. Ток потребления схемы защиты мизерный, и составляет около 2,5 МИКРОампер.

Подробнее о работе платы защиты

{youtube}lXKELGFo79o {/youtube}

Собираем мощную плату контроля

{youtube} _w-AUCG4k_0 {/youtube}

Плата защиты для одной банки LI-ION http://ali.pub/28463y

Плата защиты для двух банок

Сегодня у многих пользователей скопилось по несколько рабочих и неиспользуемых литиевых аккумуляторов, появляющихся при замене мобильных телефонов на смартфоны.

При эксплуатации аккумуляторов в телефонах со своим зарядным устройством, благодаря использованию специализированных микросхем для контроля заряда, проблем с зарядом практически не возникает. Но при использовании литиевых аккумуляторов в различных самоделках возникает вопрос, как и чем заряжать такие аккумуляторы. Некоторые считают, что литиевые аккумуляторы уже содержат встроенные контроллеры заряда, но на самом деле в них встроены схемы защиты, такие аккумуляторы называют защищёнными. Схемы защиты в них предназначены в основном для защиты от глубокого разряда и превышения напряжения при зарядке выше 4,25В, т.е. это аварийная защита, а не контроллер заряда.

Некоторые «самодельщики» на сайте тут - же напишут, что за небольшие деньги можно заказать специальную плату из Китая, с помощью которой можно зарядить литиевые аккумуляторы. Но это только для любителей «шопинга». Нет смысла покупать то, что легко собирается за несколько минут из дешевых и распространенных деталей. Не нужно забывать и о том, что заказанную плату придется ждать около месяца. Да и покупное устройство не приносит такого удовлетворения, как сделанное своими руками .

Предлагаемое зарядное устройство способен повторить практически каждый. Данная схема весьма примитивна, но полностью справляется со своей задачей. Все что требуется для качественной зарядки Li-Ion аккумуляторов, это стабилизировать выходное напряжение зарядного устройства и ограничить ток заряда.

Зарядное устройство отличается надежностью, компактностью и высокой стабильностью выходного напряжения, а, как известно, для литий-ионных аккумуляторов это является очень важной характеристикой при зарядке.

Схема зарядного устройства для li-ion аккумулятора

Схема зарядного устройства выполнена на регулируемом стабилизаторе напряжения TL431 и биполярном NPN транзисторе средней мощности. Схема позволяет ограничить зарядный ток аккумулятора и стабилизирует выходное напряжение.

В роли регулирующего элемента выступает транзистор Т1. Резистор R2 ограничивает ток заряда, значение которого зависит лишь от параметров аккумулятора. Рекомендуется использовать резистор мощностью 1 вт. Другие резисторы могут иметь мощность 125 или 250 мВт.

Выбор транзистора определяется необходимым зарядным током установленным для зарядки аккумулятора. Для рассматриваемого случая, зарядки аккумуляторов от мобильных телефонов, можно применить отечественные или импортные NPN транзисторы средней мощности (например, КТ815, КТ817, КТ819). При высоком входном напряжении или использовании транзистора малой мощности, необходимо транзистор установить на радиатор.

Светодиод LED1 (выделен красным цветом в схеме), служит для визуальной сигнализации заряда аккумулятора. При включении разряженного аккумулятора, индикатор светится ярко и по мере заряда тускнеет. Свечение индикатора пропорционально току заряда аккумулятора. Но следует учесть, что при полном затухании светодиода, батарея все еще будет заряжаться током менее 50ма, что требует периодического контроля над устройством для исключения перезаряда.

Для повышения точности контроля окончания заряда, в схему зарядного устройства добавлен дополнительный вариант индикации заряда аккумулятора (выделен зеленым цветом) на светодиоде LED2, маломощном PNP транзисторе КТ361 и датчике тока R5. В устройстве возможно использование любого варианта индикатора в зависимости от требуемой точности контроля заряда аккумулятора.

Представленная схема предназначается для заряда только одного Li-ion аккумулятора. Но это зарядное устройство можно использовать и для заряда других видов аккумуляторов. Требуется лишь выставить необходимое для этого значение выходного напряжения и ток зарядки.

Изготовление зарядного устройства

1. Приобретаем или подбираем из имеющихся в наличии, комплектующие для сборки в соответствии со схемой.

2. Сборка схемы.
Для проверки работоспособности схемы и ее настройки, собираем зарядное устройство на монтажной плате.

Диод в цепи питания аккумулятора (минусовая шина – синий провод) предназначен для предотвращения разряда литий-ионного аккумулятора при отсутствии напряжения на входе зарядного устройства.

3. Настройка выходного напряжения схемы.
Подключаем схему к источнику питания напряжением 5…9 вольт. Подстроечным сопротивлением R3 устанавливаем выходное напряжение зарядного устройства в пределах 4,18 – 4,20 вольта (при необходимости, в конце настройки измеряем его сопротивление и ставим резистор с нужным сопротивлением).

4. Настройка зарядного тока схемы.
Подключив к схеме разряженный аккумулятор (о чем сообщит включившийся светодиод), резистором R2 устанавливаем по тестеру величину зарядного тока (100…300 ма). При сопротивлении R2 менее 3 ом светодиод может не светится.

5. Готовим плату для монтажа и пайки деталей.
Вырезаем необходимый размер из универсальной платы, аккуратно обрабатываем края платы напильником, очищаем и лудим контактные дорожки.

6. Монтаж отлаженной схемы на рабочую плату
Переносим детали с монтажной платы на рабочую, паяем детали, выполняем недостающую разводку соединений тонким монтажным проводом. По окончании сборки основательно проверяем монтаж.

Покупался лот из десяти штук, для переделки питания кое-каких устройств на li-ion аккумуляторы (сейчас в них используется 3АА аккумулятора ), но в обзоре я покажу другой вариант применения этой платы, который, хоть и не задействует все её возможности. Просто из этих десяти штук нужны только будут только шесть, а покупать поштучно 6 с защитой и пару без защиты получается менее выгодно.

Основанная на TP4056 плата заряда с защитой для Li-Ion аккумуляторов c током до 1A предназначена для полноценной зарядки и защиты аккумуляторов (к примеру, популярных 18650 ) с возможностью подключения нагрузки. Т.е. данную плату можно легко встроить в различные устройства, такие как фонарики, светильники, радиоприемники и т.д.,с питанием от встроенного литиевого аккумулятора, и заряжать его не вынимая из устройства любой USB-зарядкой через microUSB разъем. Ещё эта плата отлично подойдет для ремонта сгоревших зарядок Li-Ion аккумуляторов.

И так, кучка плат, каждая в индивидуальном пакетике (тут уже конечно меньше чем покупалось )

Выглядит платка вот так:

Можно рассмотреть поближе установленные элементы

Слева microUSB вход питания, питание также продублировано площадками + и - под пайку.

В центре контроллер заряда, Tpower TP4056, над ним пара светодиодов, отображающих либо процесс заряда (красный) либо окончание заряда (синий), под ним резистор R3, изменяя номинал которого можно изменить ток заряда аккумулятора. TP4056 заряжает аккмуляторы по алгоритму CC/CV и автоматически завершает процесс зарядки, если ток заряда снижается до 1/10 от установленного.

Табличка номиналов сопротивления и зарядного тока, согласно спецификации контроллера.


  • R (кОм) - I (mA)

  • 1.2 - 1000

  • 1.33 - 900

  • 1.5 - 780

  • 1.66 - 690

  • 2 - 580

  • 3 - 400

  • 4 - 300

  • 5 - 250

  • 10 - 130

правее стоит микросхема защиты аккумулятора (DW01A), с необходимой обвязкой (электронный ключ FS8205A 25мОм с током до 4А), и на правом краю есть площадки B+ и B- (будьте внимательны, возможна плата не защищена от переполюсовки ) для подключения аккумулятора и OUT+ OUT- для подключения нагрузки.

С обратной стороны платы нет ничего, так что её можно, например, приклеить.

А теперь вариант применения платы заряда и защиты li-ion аккумуляторов.

Ныне почти во всех видеокамерах любительского формата в качестве источников питания используются li-ion аккумуляторы напряжением 3,7В, т.е. 1S. Вот один из дополнительно купленных аккумуляторов для моей видеокамеры


У меня их несколько, производства (или маркировки ) DSTE модель VW-VBK360 емкостью по 4500мАч (не считая оригинального, на 1790мАч )

Зачем мне столько? Да, конечно, моя камера заряжается от БП с номиналами 5В 2А, и купив отдельно штекер USB и подходящий разъем, я теперь могу её заряжать и от повербанков (и это одна из причин зачем мне, и не только мне, их столько ), да вот только снимать на камеру, к которой ещё и тянется провод - неудобно. Значит надо как-то заряжать аккумуляторы вне камеры.

Я уже показывал в вот такую зарядку

Да-да, это она, с поворачивающейся вилкой американского стандарта

Вот так она легко разделяется

И вот так, в неё вживляется плата заряда и защиты литиевых аккумуляторов

И конечно же, я вывел пару светодиодов, красный - процесс заряда, зеленый - окончание заряда аккумулятора

Вторая плата была установлена аналогично, в зарядку от видеокамеры Sony. Да, конечно, новые модели видеокамер Sony заряжаются от USB, у них даже есть не отсоединяющийся USB-хвостик (глупое на мой взгляд решение ). Но опять же, в полевых условиях, снимать на камеру, к которой тянется кабель от повербанка менее удобно чем без него. Да и кабель должен быть достаточно длинным, а чем длиннее кабель, тем больше его сопротивление и тем больше на нем потери, а уменьшать сопротивление кабеля увеличивая толщину жил, кабель становится более толстым и менее гибким, что не добавляет удобства.

Так что из таких плат для заряда и защиты li-ion аккумуляторов до1А на TP4056 легко можно сделать простое зарядное устройство для аккумулятора своими руками, переделать зарядное устройство на питание от USB, например для зарядки аккумуляторов от повербанка, сделать ремонт зарядного устройства при необходимости.

Все написанное в этом обзоре можно увидеть в видеоверсии: