Узнать все секреты ремонта бытовой электрон. Методы поиска неисправностей в электронных схемах

Узнать все секреты ремонта бытовой электрон. Методы поиска неисправностей в электронных схемах
Узнать все секреты ремонта бытовой электрон. Методы поиска неисправностей в электронных схемах

Каждый из нас, когда начинает увлекаться чем-то новым, сразу кидается в «пучину страсти» пытаясь выполнить или реализовать непростые проекты самоделок . Так было и со мной, когда я увлекся электроникой. Но как обычно бывает – первые неудачи поубавили запал. Однако отступать я не привык и начал систематически (буквально с азов) постигать таинства мира электроники. Так и родилось «руководство для начинающих технарей»

Шаг 1: Напряжение, ток, сопротивление

Эти понятия являются фундаментальными и без знакомства с ними продолжать обучение основам было бы бессмысленно. Давайте просто вспомним, что каждый материал состоит из атомов, а каждый атом в свою очередь имеет три типа частиц. Электрон — одна из этих частицы, имеет отрицательный заряд. Протоны же имеют положительный заряд. В проводящих материалах (серебро, медь, золото, алюминий и т.д.) есть много свободных электронов, которые перемещаются хаотично. Напряжение является той силой, которая заставляет электроны перемещаться в определенном направлении. Поток электронов, который движется в одном направлении, называется током. Когда электроны перемещаются по проводнику, то они сталкиваются с неким трением. Это трение называют сопротивлением. Сопротивление «ужимает» свободное перемещения электронов, таким образом снижая величину тока.

Более научное определение тока – скорость изменения количество электронов в определенном направлении. Единица измерения тока — Ампер (I). В электронных схемах протекающий ток лежит в диапазоне миллиампера (1 ампер = 1000 миллиампер). Например, свойственный ток для светодиода 20mA.

Единица измерения напряжения – Вольт (В). Батарея – является источником напряжения. Напряжение 3В, 3.3В, 3.7В и 5В является наиболее распространенным в электронных схемах и устройствах.

Напряжение является причиной, а ток – результатом.

Единица измерения сопротивления – Ом (Ω).

Шаг 2: Источник питания

Аккумуляторная батарея — источник напряжения или «правильно» источник электроэнергии. Батарея производит электроэнергию за счет внутренней химической реакции. На внешней стороне у неё присутствуют две клеммы. Одна из них является положительным выводом (+ V), а другая отрицательным (-V), или «землёй». Обычно источники питания бывают двух типов.

  • Батареи;
  • Аккумуляторы.

Батарейки используются один раз, а затем утилизируются. Аккумуляторы могут быть использованы несколько раз. Батарейки бывают разных форм и размеров, от миниатюрных, используемых для питания слуховых аппаратов и наручных часов до батарей размером с комнату, которые обеспечивают резервное питание для телефонных станций и компьютерных центров. В зависимости от внутреннего состава источники питания могут быть разных типов. Несколько наиболее распространённых типов, используемых в робототехнике и технических проектах:

Батареи 1,5 В

Батарейки с таким напряжением могут иметь различные размеры. Наиболее распространённые размеры АА и ААА. Диапазон ёмкости от 500 до 3000 мАч.

3В литиевая «монетка»

Все эти литиевые элементы рассчитаны номинально на 3 В (при нагрузке) и с напряжением холостого хода около 3,6 вольт. Ёмкость может достигать от 30 до 500мAч. Широко используется в карманных устройствах за счёт их крошечных размеров.

Никель-металлогидридные (NiМГ)

Эти батареи имеют высокую плотность энергии и могут заряжаться почти мгновенно. Другая важная особенность — цена. Такие аккумуляторы дешёвые (в сравнение с их размерами и ёмкостями). Этот тип батареи часто используется в робототехнических самоделках .

3.7 В литий-ионные и литий-полимерные аккумуляторы

Они имеют хорошую разряжающую способность, высокую плотность энергии, отличную производительность и небольшой размер. Литий-полимерный аккумулятор широко используется в робототехнике.

9-вольтовая батарея

Наиболее распространенная форма — прямоугольная призма с округленными краями и клеммами, что расположены сверху. Ёмкость составляет около 600 мАч.

Свинцово-кислотные

Свинцово-кислотные аккумуляторы являются рабочей лошадкой всей радио-электронной промышленности. Они невероятно дешёвы, перезаряжаются и их легко купить. Свинцово-кислотные аккумуляторы используются в машиностроении, UPS (источниках бесперебойного питания), робототехнике и других системах, где необходим большой запас энергии, а вес не так важен. Наиболее распространенными являются напряжения 2В, 6В, 12В и 24В.

Последовательно-параллельное соединение батарей

Источник питания может быть подключен последовательно или параллельно. При подключении последовательно величина напряжения увеличивается, а когда подключение параллельное – увеличивается текущая величина тока.

Существует два важных момента относительно батарей:

Емкость является мерой (как правило, в Aмп-ч) заряда, хранящейся в батарее, и определяется массой активного материала, содержащегося в ней. Ёмкость представляет собой максимальное количество энергии, которую можно извлечь при определенно заданных условиях. Тем не менее, фактические возможности хранения энергии аккумулятора могут значительно отличаться от номинального заявленного значения, а ёмкость батареи сильно зависит от возраста и температуры, режимов зарядки или разрядки.

Ёмкость батареи измеряется в ватт-часах (Вт*ч), киловатт-часах (кВт-ч), ампер-часах (А*ч) или миллиампер-час (мА * ч). Ватт-час – это напряжение (В) умноженное на силу тока(I) (получаем мощность – единица измерения Ватты (Вт)), которое может выдавать батарея определенный период времени (как правило, 1 час). Так как напряжение фиксируемое и зависит от типа аккумулятора (щелочные, литиевые, свинцово-кислотные, и т.д.), часто на внешней оболочке отмечают лишь Ач или мАч (1000 мАч = 1Aч). Для более продолжительной работы электронного устройства необходимо брать батареи с низким током утечки. Чтобы определить срок службы аккумулятора, разделите ёмкость на фактический ток нагрузки. Цепь, которая потребляет 10 мА и питается от 9-вольтной батареи будет работать около 50 часов: 500 мАч / 10 мА = 50 часов.

Во многих типах аккумуляторов, вы не можете «забрать» энергию полностью (другими словами, аккумулятор не может быть полностью разряжен), не нанося серьезный, и часто непоправимый ущерб химическим составляющим. Глубина разрядки (DOD) аккумулятора определяет долю тока, которая может быть извлечена. Например, если DOD определено производителем как 25%, то только 25% от ёмкости батареи может быть использовано.

Темпы зарядки/разрядки влияют на номинальную ёмкость батареи. Если источник питания разряжается очень быстро (т.е., ток разряда высокий), то количество энергии, которое может быть извлечено из батареи снижается и ёмкость будет ниже. С другой стороны если батарея разряжается очень медленно (используется низкий ток), то ёмкость будет выше.

Температура батареи также будет влиять на ёмкость. При более высоких температурах ёмкость аккумулятора, как правило, выше, чем при более низких температурах. Тем не менее, намеренное повышение температуры не является эффективным способом повышения ёмкости аккумулятора, так как это также уменьшает срок службы самого источника питания.

С-Ёмкость: Токи заряда и разряда любой аккумуляторной батареи измеряются относительно её емкости. Большинство батарей, за исключением свинцово-кислотных, оценено в 1C. Например, батарея с ёмкостью 1000mAh, выдает 1000mA в течение одного часа, если уровень – 1C. Та же батарея, с уровнем 0.5C, выдает 500mA в течение двух часов. С уровнем 2C, та же батарея выдает 2000mA в течение 30 минут. 1C часто упоминается как одночасовой разряд; 0.5C – как двухчасовой и 0.1C – как 10-часовой.

Ёмкость батареи обычно измеряется с помощью анализатора. Анализаторы тока отображают информацию в процентах отталкиваясь от значения номинальной ёмкости. Новая батарея иногда выдает больше 100 % тока. В таком случае, батарея просто оценена консервативно и может выдержать более длительное время, чем указанно производителем.

Зарядное устройство может быть подобрано с точки зрения ёмкости батареи или величины C. Например зарядное устройство с номиналом C/10 полностью зарядит батарею через 10 часов, зарядное устройство с номиналом в 4C, зарядило бы аккумулятор через 15 минут. Очень быстрые темпы зарядки (1 час или менее) обычно требуют того, чтобы зарядное устройство тщательно контролировало параметры аккумулятора, такие как предельное напряжение и температура, чтобы предотвратить перезаряд и повреждения батареи.

Напряжение гальванического элемента определяется химическими реакциями, что проходят внутри него. Например, щелочные элементы – 1.5 В, все свинцово- кислотные – 2 В, а литиевые – 3 В. Батареи могут состоять из нескольких ячеек, поэтому вы редко, где сможете увидеть 2-вольтовую свинцово-кислотную батарею. Обычно они соединены вместе внутри, чтобы выдавать 6 В, 12 В или 24 В. Не стоит забывать о том, что номинальное напряжение в «1.5-вольтовой» батарее типа AA фактически начинается с 1.6 В, затем быстро опускается к 1.5, после чего медленно дрейфует вниз к 1.0 В, при котором батарею уже принято считать ‘разряженной’.

Как лучше выбрать батарею для поделки ?

Как вы уже поняли, в свободном доступе, можно найти много типов батарей с разным химическим составом, таким образом, не легко выбрать, какое питание является лучшим для именно вашего проекта. Если проект очень энергозависимый (большие системы звука и моторизованные самоделки ) следует выбирать свинцово-кислотную батарею. Если вы хотите построить переносную поделку , которая будет потреблять небольшой ток, то следует выбрать литиевую батарею. Для любого портативного проекта (легкий вес и умеренное питание) выбираем литиево-ионный аккумулятор. Вы можете выбрать более дешёвый аккумулятор на основе метало-никелевого гидрида (NIMH), хотя они более тяжёлые, но не уступают литиево-ионным в остальных характеристиках. Если вы хотели бы сделать энергоёмкий проект то литиево-ионный щелочной (LiPo) аккумулятор будет лучшим вариантом, потому что он имеет маленькие размеры, лёгок по сравнению с другими типами батарей, перезаряжается очень быстро и выдаёт ток высокого значения.

Хотите, чтобы Ваши аккумуляторы прослужили долгое время? Используйте высококачественное зарядное устройство, которое имеет датчики для поддержания надлежащего уровня заряда и подзарядки малым током. Дешёвое зарядное устройство убьёт ваши аккумуляторы.

Шаг 3: Резисторы

Резистор — очень простой и наиболее распространённый элемент на схемах. Он применяется для того, чтобы управлять или ограничивать ток в электрической цепи.

Резисторы — пассивные компоненты, которые только потребляют энергию (и не могут производить её). Резисторы, как правило, добавляются в цепь, где они дополняют активные компоненты, такие как ОУ, микроконтроллеры и другие интегральные схемы. Обычно они используются, чтобы ограничить ток, разделить напряжения и линии ввода/вывода.

Сопротивление резистора измеряется в Омах. Большие значения могут быть сопоставлены с префиксом кило-, мега-, или гига, чтобы сделать значения легко читаемыми. Часто можно увидеть резисторы с меткой кОм и МОм диапазоне (гораздо реже мОм резисторы). Например, 4,700Ω резистор эквивалентен 4.7kΩ резистору и 5,600,000Ω резистор можно записать в виде 5,600kΩ или (более обычно) 5.6MΩ.

Существуют тысячи различных типов резисторов и множество фирм, что их производят. Если брать грубую градацию то существуют два вида резисторов:

  • с чётко заданными характеристиками;
  • общего назначения, чьи характеристики могут «гулять» (производитель сам указывает возможное отклонение).

Пример общих характеристик:

  • Температурный коэффициент;
  • Коэффициент напряжения;
  • Частотный диапазон;
  • Мощность;
  • Физический размер.

По своим свойствам резисторы могут быть классифицированы как:

Линейный резистор — тип резистора, сопротивление которого остается постоянным с увеличением разности потенциалов (напряжения), что прикладываются к нему (сопротивление и ток, что проходит через резистор не изменяется от приложенного напряжения). Особенности вольт-амперной характеристики такого резистора — прямая линия.

Не линейный резистор – это резистор, сопротивление которого изменяется в зависимости от значения прикладываемого напряжения или протекающего через него тока. Это тип имеет нелинейную вольт-амперную характеристику и не строго следует закону Ома.

Есть несколько типов нелинейных резисторов:

  • Резисторы ОТК (Отрицательный Температурный Коэффициент) — их сопротивление понижается с повышением температуры.
  • Резисторы ПЕК (Положительный Температурный Коэффициент) — их сопротивление увеличивается с повышением температуры.
  • Резисторы ЛЗР (Светло-зависимые резисторы) — их сопротивление изменяется с изменением интенсивности светового потока.
  • Резисторы VDR (Вольт зависимые резисторы) — их сопротивление критически понижается, когда значение напряжения превышает определенное значение.

Не линейные резисторы используются в различных проектах. ЛЗР используется в качестве датчика в различных робототехнических проектах.

Кроме этого, резисторы бывают с постоянным и переменным значением:

Резисторы постоянного значения — типы резисторов, значение которых уже установлено, при производстве и не может быть изменено во время использования.

Переменный резистор или потенциометр – тип резистора, значение которого может быть изменено во время использования. Этот тип обычно имеет вал, который поворачивается или перемещается вручную для изменения значения сопротивления в фиксированном диапазоне, например, от. 0 кОм до 100 кОм.

Магазин сопротивлений:

Этот тип резистора состоит из «упаковки», в которой содержится два или более резисторов. Он имеет несколько терминалов, благодаря которым может быть выбрано значение сопротивления.

По составу резисторы бывают:

Углеродные:

Сердечник таких резисторов отливается из углерода и связующего вещества, создающих требуемое сопротивление. Сердечник имеет чашеобразные контакты, удерживающие стержень резистора с каждой стороны. Весь сердечник заливается материалом (наподобие бакелита) в изолированном корпусе. Корпус имеет пористую структуру, поэтому углеродные композиционные резисторы чувствительны к относительной влажности окружающей среды.

Эти типы резисторов обычно производит шум в цепи за счёт электронов, проходящих через углеродные частицы, таким образом, эти резисторы, не используются в «важных» схемах, хотя они дешевле.

Осаждения углерода:

Резистор, который сделан путём нанесения тонкого слоя углерода вокруг керамического стержня — называется углеродо-осаждённым резистором. Он изготавливается путем нагревания керамических стержней внутри колбы метана и осаждением углерода вокруг них. Значение резистора определяется количеством углерода, осажденного вокруг керамического стержня.

Пленочный резистор:

Резистор выполнен путем осаждения распыляемого металла в вакууме на керамическую основу прута. Эти типы резисторов очень надежны, имеют высокую устойчивость, а также имеют высокий температурный коэффициент. Хотя они дороже по сравнению с другими, но используются в основных системах.

Проволочный резистор:

Проволочный резистор изготовлен путем намотки металлической проволоки вокруг керамического сердечника. Металлический провод представляет собой сплав различных металлов подобранных согласно заявленным особенностям и сопротивлениям требуемого резистора. Эти тип резистора имеет высокую стабильность, а также выдерживает большие мощности, но, как правило, они более громоздкие по сравнению с другими типами резисторов.

Метало-керамические:

Эти резисторы изготовлены путем обжига некоторых металлов, смешанные с керамикой на керамической подложке. Доля смеси в смешанном метало-керамическом резисторе определяет значение сопротивления. Этот тип очень стабилен, а также имеет точно вымеренное сопротивление. Их в основном используют для поверхностного монтажа на печатных платах.

Прецизионные резисторы:

Резисторы, значение сопротивлений которых лежит в пределах допуска, поэтому они очень точны (номинальная величина находится в узком диапазоне).

Все резисторы имеют допуск, который даётся в процентах. Допуск говорит нам, насколько близко к номинальному значению сопротивления может изменяться. Например, 500Ω резистор, который имеет значение допуска 10%, может иметь сопротивление между 550Ω или 450Ω. Если же резистор имеет допуск 1%, сопротивление будет меняться только на 1%. Таким образом, 500Ω резистор может варьироваться от 495Ω 505Ω.

Прецизионный резистор — резистор, у которого уровень допуска всего 0.005%.

Плавкий резистор:

Проволочный резистор, разработан таким образом, чтобы легко перегореть, когда номинальная мощность превысет граничный порог. Таким образом плавкий резистор имеет две функции. Когда питание не превышено, он служит ограничителем тока. Когда номинальная мощность превышена, оа функционирует как предохранитель, после перегорания цепь становится разорванной, что защищает компоненты от короткого замыкания.

Терморезисторы:

Теплочувствительный резистор, значение сопротивления которого изменяется с изменением рабочей температуры.

Терморезисторы показывают или положительный температурный коэффициент (PTC) или отрицательный температурный коэффициент (NTC).

Насколько изменяется сопротивление с изменениями рабочей температуры зависит от размера и конструкции терморезистора. Всегда лучше проверить справочные данные, чтобы узнать все спецификации терморезисторов.

Фоторезисторы:

Резисторы, сопротивление которых меняется в зависимости от светового потока, что падает на его поверхность. В тёмной среде сопротивление фоторезистора очень высоко, несколько M Ω. Когда интенсивный свет попадает на поверхность, сопротивление фоторезистора существенно падает.

Таким образом фоторезисторы — переменные резисторы, сопротивление которых зависит от количества света, что падает на его поверхность.

Выводные и безвыводные типы резисторов:

Выводные резисторы: Этот тип резисторов использовался в самых первых электронных схемах. Компоненты подключались к выводным клеммам. С течением времени, начали использоваться печатные платы, в монтажные отверстия которых впаивались выводы радиоэлементов.

Резисторы поверхностного монтажа:

Этот тип резистора всё более часто стали использовать начиная с введения технологии поверхностного монтажа. Обычно этот тип резистора создается путём использования тонкоплёночной технологии.

Шаг 4: Стандартные или общие значения резисторов

Система обозначений имеет свои истоки, которые выходят с начала прошлого века, когда большинство резисторов были углеродными с относительно плохими производственными допусками. Объяснение довольно простое – используя 10% допуск можно уменьшить число выпускаемых резисторов. Было бы малоэффективно производить резисторы с сопротивлением 105 Ом, так как 105 находится в пределах 10%-го диапазона допуска резистора на 100 Ом. Следующая рыночная категория составляет 120 Ом, потому что у резистора на 100 Ом с 10%-й терпимостью, будет диапазон между 90 и 110 Ом. У резистора на 120 Ом диапазон лежит между 110 и 130 Ом. По этой логики предпочтительно выпускать резисторы с 10% допуском 100, 120, 150, 180, 220, 270, 330 и так далее (соответственно округлены). Это — ряд E12, показанный ниже.

Терпимость 20% E6,

Терпимость 10% E12,

Терпимость 5% E24 (и обычно 2%-я терпимость),

Терпимость 2% E48,

E96 1% терпимости,

E192 0,5, 0,25, 0,1% и выше допуски.

Стандартные значения резисторов:

Е6 серии: (20% допуска) 10, 15, 22, 33, 47, 68

E12 серии: (10% допуска) 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82

E24 серии: (5% допуска) 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91

E48 серии: (2% допуска) 100, 105, 110, 115, 121, 127, 133, 140, 147, 154, 162, 169, 178, 187, 196, 205, 215, 226, 237, 249, 261, 274, 287, 301, 316, 332, 348, 365, 383, 402, 422, 442, 464, 487, 511, 536, 562, 590, 619, 649, 681, 715, 750, 787, 825, 866, 909, 953

E96 серии: (1% допуска) 100, 102, 105, 107, 110, 113, 115, 118, 121, 124, 127, 130, 133, 137, 140, 143, 147, 150, 154, 158, 162, 165, 169, 174, 178, 182, 187, 191, 196, 200, 205, 210, 215, 221, 226, 232, 237, 243, 249, 255, 261, 267, 274, 280, 287, 294, 301, 309, 316, 324, 332, 340, 348, 357, 365, 374, 383, 392, 402, 412, 422, 432, 442, 453, 464, 475, 487, 491, 511, 523, 536, 549, 562, 576, 590, 604, 619, 634, 649, 665, 681, 698, 715, 732, 750, 768, 787, 806, 825, 845, 866, 887, 909, 931, 959, 976

E192 серии: (0,5, 0,25, 0,1 и 0,05% допуска) 100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 132, 133, 135, 137, 138, 140, 142, 143, 145, 147, 149, 150, 152, 154, 156, 158, 160, 162, 164, 165, 167, 169, 172, 174, 176, 178, 180, 182, 184, 187, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, 215, 218, 221, 223, 226, 229, 232, 234, 237, 240, 243, 246, 249, 252, 255, 258, 261, 264, 267, 271, 274, 277, 280, 284, 287, 291, 294, 298, 301, 305, 309, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 357, 361, 365, 370, 374, 379, 383, 388, 392, 397, 402, 407, 412, 417, 422, 427, 432, 437, 442, 448, 453, 459, 464, 470, 475, 481, 487, 493, 499, 505, 511, 517, 523, 530, 536, 542, 549, 556, 562, 569, 576, 583, 590, 597, 604, 612, 619, 626, 634, 642, 649, 657, 665, 673, 681, 690, 698, 706, 715, 723, 732, 741, 750, 759, 768, 777, 787, 796, 806, 816, 825, 835, 845, 856, 866, 876, 887, 898, 909, 920, 931, 942, 953, 965, 976, 988

При разработке оборудования лучше всего придерживаться самого низкого раздела, т.е. лучше использовать E6, а не E12. Таким образом, чтобы число различных групп в любом оборудовании было минимизировано.

Продолжение следует

На чтение 4 мин.

Каждому вейперу рано или поздно приходится столкнуться с такой задачей, как ремонт электронных сигарет. Зачастую отремонтировать девайс можно своими руками, но для начала необходимо ознакомиться с его строением.

Конструкция

Итак, какие детали входят в состав vape? В электронной сигарете есть испаритель (атомайзер) и батарейный блок (мод). Атомайзер подает жидкость на нагревательный элемент (в большинстве случаев спираль) через специальный фитиль из ваты. Испарители бывают нескольких типов и различаются вместимостью, количеством пара, потенциалом раскрытия вкуса и сложностью обслуживания. Следует также отметить, что ряд типов относят к необслуживаемым. Они не подразумевают самостоятельной замены фитиля и перемотки спирали пользователем и требуют покупки расходных элементов.

Испаритель соединен резьбой с батарейным блоком, отвечающим за питание атомайзера электрическим током. Элемент питания может быть как встроенным в мод, так и сменным. Сами моды можно разделить на два основных типа: механический и VV/VW. В первом случае не используется контролирующая напряжение микросхема и ток подается напрямую на нагреватель, во втором пользователь может управлять напряжением посредством микросхемы. Функционально батарейные блоки различаются емкостью, наличием индикации заряда, типом управления и рядом дополнительных функций. Что делать, если электронная сигарета не работает? Рассмотрим возможные способы устранения неисправности.

Проблемы и решения

Выглядит список наиболее часто встречающихся проблем с электронной сигаретой так: сигарета перестала работать («не курится»), качество пара стало хуже, количество пара уменьшилось. Практика показывает, что в таких случаях предстоит ремонт испарителя электронной сигареты.

  1. Необходимо раскрутить vape, отделив таким образом атомайзер от мода.
  2. Разбираем испаритель, чтобы извлечь спираль и вату.
  3. Если на спирали есть нагар, то необходимо от него избавиться. Гораздо легче будет это сделать, предварительно прогрев ее на газу.
  4. Заменяем вату на новую и аккуратно собираем испаритель обратно.
  5. Соединяем мод и атомайзер, проверяем результат.
Если при разборке испарителя вы обнаружили сломавшийся элемент (к примеру, спираль), то его придется заменить. Если же электронная сигарета и вовсе не раскручивается, то придется прочистить или смазать резьбу. Но испаритель не всегда является единственной причиной, по которой не работает электронная сигарета.

Почему не работает устройство, хотя проделаны все вышеперечисленные действия? Возможно, проблема кроется в батарейном блоке. Если не следить за состоянием аккумулятора, он может выйти из строя. Когда ваша электронная сигарета мигает, это свидетельствует о том, что заряд батареи на исходе (за исключением того случая, когда мигание происходит при подключении атомайзера: он мог сломаться, попробуйте его заменить).

Читайте также: Особенность жидкости для электронных сигарет без никотина

В случае возникновения проблем с питанием, возможно, придется заменить свой мод целиком в том случае, если аккумулятор несъемный и/или сгорела электроника, либо поменять аккумулятор или микросхему по отдельности. Потребуется раскручивать девайс. Отремонтировать элемент питания самостоятельно у вас не получится, да и практического смысла это не имеет.

Если с атомайзером все в порядке, батарея заряжается, а индикаторы работы функционируют, проблема кроется в микросхеме мода. Раскрутите vape, разберите батарейный блок и проверьте, не отошли ли контакты микросхемы.

Стоит добавить, что электронная сигарета может переставать «парить», когда между атомайзером и блоком отсутствует контакт. Всегда удостоверяйтесь, что резьба закручена полностью.

Иногда в вейпе могут происходить протечки, короткие замыкания и другие мелкие сбои, из-за которых устройство может выйти из строя. К счастью, есть пара простых методов, которые следует пробовать каждый раз перед тем, как пытаться самостоятельно починить электронную сигарету.

Чаще всего люди интересуются электроникой чтобы уметь починить какой-либо прибор. Самостоятельной разработкой занимается лишь малая часть любителей. Теоретические знания хоть и дают общее понимания принципа работы компонентов, но для ремонта гораздо важнее знать методы их проверки. Мы расскажем, как найти неисправность в электронной схеме своими руками, глазами и простым инструментом.

Основные способы поиска неполадки

Прежде чем провести ремонт важно определить в чем проблема - этот процесс называется диагностикой. Итак, можно выделить два этапа проверки электронных приборов:

1. Проверка работоспособности прибора. Не всегда случается так что устройство совсем «мёртвое», нужно проверить не включается прибор совсем, или включается и сразу выключается, или же не работают какие-то конкретные кнопки или функции.

Например, при ремонте LCD-мониторов встречается такая проблема как выход из строя подсветки. При этом монитор может либо не включатся совсем тогда его индикатор моргает, либо же индикатор указывает на включенное состояние, но изображения нет. В таком случае если посветить фонарём в экран можно увидеть, что изображение все-таки есть и монитор как бы работает, но он тёмный - и это только один из примеров, когда предварительная проверка упрощает диагностику.

Внешне можно определить большинство проблем с электрическим прибором. Это могут быть как просто сгоревшие компоненты - диоды, резисторы, транзисторы и конденсаторы, так и дефекты пайки или механические повреждение элементов и самой печатной платы.

3. Измерения. Если плата и детали выглядят нормально, то следует переходить к измерениям. Их проводят в основном с помощью мультиметра и осциллографа. В отдельных случаях используют специализированные приборы, типа частотомеров, логических анализаторов и прочего.

Итак, обобщенным алгоритмом поиска неисправности является:

    Осмотр платы;

    Определение чрезмерного нагрева электронных компонентов платы;

    Измерения и прозвонка мультиметром;

    Использование осциллографа и других приборов;

    Замена вышедшей из строя детали или блока.

Визуальный осмотр следует проводить от общего к частному. Или простыми словами - осмотреть общий вид электронного устройства, сразу проверяем целостность кабелей и проводов питания. Их покров должен быть ровным и целым, без изломов и резких перегибов, шишек и других неравномерностей на оболочке быть не должно.

После того как вы убедились в целостности устройства, нужно его разобрать и добраться к печатной плате. Осмотр внутренностей следует начинать с проверки целостности шлейфов, проводов других межблочных соединений. Важно не порвать их еще при разборке, так как часто шлейфы идут от плат к блокам клавиш и дисплеям, закрепленным на корпусе.

После этого осматривают наличие следов нагрева или сажи на плате и поврежденные компоненты. Рассмотрим, как выглядят неисправные электронные компоненты. Например, корпуса неисправных транзисторов и сгоревших диодов разрывает или они трескаются.

На интегральных микросхемах появляется трещина или мелкая точка. В некоторых случаях и те, и другие сгорают, оставляя в результате следы гари на плате. Обращайте внимание нет ли характерного запаха горелой изоляции. Так можно локализировать от какого элемента или участка платы исходит этот запах. Как определить сгоревшие транзисторы и микросхемы вы видите ниже.

Резисторы обычно сгорают или темнеют, реже происходит обрыв резистивного слоя и деталь выглядит исправной.

Как определить сгоревшие конденсаторы? Они в основном пробивают «накоротко» между обкладками и, если стоят в силовой цепи - тогда повреждаются дорожки платы или корпус конденсатора. Если цепь была слаботочной - пробитый конденсатор просто закоротит её без видимых следов протекания больших токов. Реже трескаются корпуса конденсаторов.

В то время как электролитические конденсаторы можно вычислить по деформированной крышке корпуса или следам протекшего вниз электролита. На крышке конденсатора есть две диагональных борозды, она нужна чтобы корпус не разорвало в аварийной ситуации. Крышка в таком случае вздувается либо трескается. Реже выдавливает дно.

С SMD-компонентами дело обстоит несколько сложнее. Часто их крайне сложно рассмотреть на предмет целостности. Есть один метод поиска короткого замыкания в плате с SMD - это термобумага, такая бумага используется в кассовой аппарате, поэтому можно использовать любой чек. Печать на ней происходит за счет нагрева. Значит, когда вы подадите питание на плату пробитая накоротко деталь, перегреется и отпечатается на бумаге. Методику поиска неисправности с помощью термобумагивы видите на видео:

Но нужно помнить об электробезопасности и не прибегать к такому способу диагностики, если вы не уверены есть ли там опасное напряжение. Безопасно и точно это можно сделать .

Для определения короткого замыкания по нагреву в большинстве случаев вам понадобится лабораторный блок питания или другой источник питания с ограничением тока. Если вы проводите диагностику цепей 220В - можете воспользоваться контрольной лампой, если есть КЗ, то лампа загорится в полный накал. Фактически она выступит в роли токоограничивающего резистора.

При визуальном осмотре важно определить состояние контактов всех разъёмных соединений. Они должны быть чистыми, без окислов с характерным медным или серебряным блеском. Если контакты не слишком сильно окислены - их можно почистить канцелярским ластиком или деревянной стороной спички.

В более запущенных случаях их нужно залудить, таким образом оловом вы восстановите контактную поверхность. Самый худший вариант, когда ни чистить, ни лудить нечего, тогда нужно либо менять плату целиком, либо припаивать к дорожкам платы проводники и соединять через них.

Также внимательно осматриваете дорожки печатной платы, они могут перегорать, трескаться при изгибе платы, отслаиваться и окисливаться. Их восстанавливают либо каплей олова, либо кусочком провода, когда дорожки расположены слишком плотно - их замещают куском провода - подойдет тонкий обмоточный провод либо жила витой пары, припаивая их к началу и концу печатной дорожки.

Подведем итоги, узнайте 5 советов по внешней диагностике электроники:

1. Большинство неисправностей можно найти при внешнем осмотре;

2. Внимательно проверяйте качество пайки и наличие микротрещин;

3. Уделяйте особое внимание силовым цепям;

4. Вздутые электролитические конденсаторы в большинстве случаев являются как причиной полной неработоспособности, так и неработоспособности каких-то отдельных функций;

5. Не всегда внешне исправная деталь является таковой.

Если внешний осмотр не принес результатов, то следует . Если устройство не подаёт признаков жизни и:

    У него сгорел предохранитель - то с помощью мультиметра прозваниваем цепь и находим на каком участке у нас короткое замыкание. Режим прозвони в большинстве мультиметров совмещен с режимом проверки диодов (на рисунке ниже);

    Если предохранитель исправен - проверяем вольтметром приходит ли питающее напряжение на плату.

Если напряжение не приходит, то проблема скорее всего в кабеле, определить это можно прозвонив кабель от вилки до места подключения к печатной плате.

Не включайте блок питания напрямую в сеть, если вы не уверены, что устранили все неполадки. Подключите последовательно лампочку накаливания, о которой мы упоминали в середине статьи.

После того как вы убедились в исправности диодного моста следует проверить приходит ли напряжение . Если нет, то искать, обрыв на плате, если приходит, то методика его проверки изображена на видео ниже:

Дальнейшая диагностика платы электронного устройства заключается в пошаговом измерении параметров каждого из компонентов и сравнение их с номинальными величинами. Задаче сильно упрощается если у вас есть схема ремонтируемого устройства.

Если у вас есть осциллограф диагностика сильно упростится, так как проверка сигналов ШИМ, на выходе контроллера и на базах или затворах транзисторов нормально возможна лишь таким образом. Как пользоваться осциллографом описано в статье и ряде других статей нашего сайта из тематического раздела .

Заключение

Ремонт электроники - это не только знания принципа работы элементов, но и интуиция, опыт и удача. Главное помнить при ремонте о технике безопасности - не следует трогать плату источников питания, если на неё подано напряжение. Разряжайте фильтрующие конденсаторы блоков питания, поскольку на их выводах может быть напряжение до 300 вольт. А также при диагностике цепей с интегральными микросхемами - лучше сразу ищите техническую документацию к ним, её можно найти по запросу «datasheet название микросхемы».

Большинство напольных весов сделаны по одному принципу, поэтому у них возникают одинаковые поломки. Чтобы узнать, как починить электронные весы напольные, потребуется изучить несколько важных нюансов.

Устройство электронных напольных весов

Изделие состоит из нескольких элементов. Как правило, специалисты выделяют следующие его части:

  • дисплей;
  • корпус;
  • печатную плату с различными микросхемами;
  • тензодатчики.

Начинать диагностику устройства нужно с поиска простых неполадок.

Прибор из закаленного стекла, которое редко выходит из строя из-за высокой прочности корпуса

Процесс эксплуатации напольных весов включает в себя постоянное надавливание на его поверхность. После этого нагрузка равномерно распределятся на датчики. Металлические тензометрические датчики могут выйти из строя из-за течения времени. Если один из них будет посылать неправильное значение, .

Если весы не работают, то ремонт весов своими руками - сложная процедура. Для устранения большинства неполадок необходимо использовать специальный инструмент. Также нужно обладать навыками, например, чтобы справиться с заменой и припаиванием нового контакта.

Для диагностики поломки потребуется проверить каждый элемент изделия. Если весы полностью отключились и не включаются, нужно разобрать их и проверить целостность всех проводов. Если они показывают некорректные данные, то нужно искать проблему среди тензодатчиков.

Устранение наиболее частых поломок

Для успешного ремонта потребуется выполнить простой алгоритм действий. Если человек хочет узнать, как отремонтировать весы напольные электронные, он должен ознакомиться с пошаговой инструкцией починки.

Ремонт датчиков

Если весы сломались из-за датчиков, в первую очередь потребуется установить вид проблемы (искривление датчика, отрыв провода, полная поломка). Если неисправность связана с искривлением конструкции, ее потребуется выпрямить. Чаще всего выходит из строя один из тензодатчиков. В таком случае потребуется выполнить следующие действия.

  1. Проверить работоспособность датчиков. Для этого нужно надавить руками на каждый из них. Даже при небольшом надавливании только на 1 датчик весы должны включаться.
  2. Разобрать весы, внимательно изучить проводку.
  3. Если имеется обрыв (рядом с платой или самим датчиком), его потребуется восстановить. Для этого нужно будет воспользоваться паяльником.
  4. В некоторых случаях обрыв спрятан за клеевой основой. Необходимо аккуратно вскрыть ее и проверить надежность соединения.

Провода, соединенные с тензометрическим датчиком

Если датчик полностью сломан, его заменяют. Самостоятельно найти и купить подходящую запчасть достаточно проблематично. При поиске нового тензодатчика необходимо обращать внимание на его совместимость с устройством. Приобретать его лучше в специализированных магазинах. При покупке необходимо пользоваться помощью консультантов. Новый датчик потребуется закрепить в посадочном месте, а также припаять к нему провода.

Починка шлейфа

Ремонт шлейфа обычно требуется, когда на дисплее цифры отображаются не полностью. Шлейф - это набор проводов, который внутри устройства соединяет дисплей и плату. Чтобы оценить состояние этого элемента и провести ремонт, выполняют следующие действия:

  1. Полный разбор корпуса. Проверка целостности шлейфа.
  2. Если цифры отображаются не полностью, то это означает, что шлейф отходит.
  3. Элементы, которые отходят от платы, надежно припаивают.

Нечеткое отображение цифр на дисплее (пример на картинке) может быть связано с его поломкой или некачественным соединением проводов

Можно использовать специальный токопроводящий клей, чтобы прижать шлейф и все контакты к плате. После этого проблема должна исчезнуть. Проводить все работы по приклеиванию или припаиванию нужно с большой осторожностью. Есть вероятность повреждения платы при неаккуратных действиях.

Калибровка устройства

В некоторых случаях неисправность связана с неправильной настройкой датчиков. Некорректные данные на дисплее могут отображаться, если по какой-то причине не была произведена калибровка. Современные весы автоматически калибруются каждый раз, когда оказываются на новом месте.