Зубчатые передачи служат для. Виды зубчатых передач

Зубчатые передачи служат для. Виды зубчатых передач

Зубчатые передачи. Общие сведения

Зубчатой передачей называется трехзвенный механизм, в котором два подвижных зубчатых звена образуют с неподвижным звеном вращательную или поступательную пару. Зубчатое звено передачи может представлять собой колесо, сектор или рейку. Зубчатые передачи служат для преобразования вращательных движений или вращательного движения в поступательное.

Все применяемые здесь и в дальнейшем термины, определения и обозначения, относящиеся к зубчатым передачам, соответствуют ГОСТ 16530—83 «Передачи зубчатые», ГОСТ 16531—83 «Передачи зубчатые цилиндрические» и ГОСТ 19325—73 «Передачи зубчатые конические».

Зубчатое зацепление представляет собой высшую кинематическую пару, так как зубья теоретически соприкасаются между собой по линиям или точкам, причем меньшее зубчатое колесо пары называется шестерней, а большее—колесом. Сектор цилиндрического зубчатого колеса бесконечно большого диаметра называется зубчатой рейкой.

Зубчатые передачи можно классифицировать по многим признакам, а именно: по расположению осей валов (с параллельными, пересекающимися, скрещивающимися осями и соосные); по условиям работы (закрытые — работающие в масляной ванне и открытые—работающие всухую или смазываемые периодически); по числу ступеней (одноступенчатые, многоступенчатые); по взаимному расположению колес (с внешним и внутренним зацеплением); по изменению частоты вращения валов (понижающие, повышающие); по форме поверхности, на которой нарезаны зубья (цилиндрические, конические); по окружной скорости колес (тихоходные при скорости до 3 м/с, среднескоростные при скорости до 15 м/с, быстроходные при скорости выше 15 м/с); по расположению зубьев относительно образующей колеса (прямозубые, косозубые, шевронные, с криволинейными зубьями); по форме профиля зуба (эвольвентные, круговые, циклоидальные).

Кроме перечисленных существуют передачи с гибкими зубчатыми колесами, называемые волновыми.

Основные виды зубчатых передач (рис.) с параллельными осями: а — цилиндрическая прямозубая, б— цилиндрическая косозубая, в— шевронная, г — с внутренним зацеплением; с пересекающимися осями: д— коническая прямозубая, е — коническая с тангенциальными зубьями, ж — коническая с криволинейными зубьями; со скрещивающимися осями: з— гипоидная, и— винтовая; к — зубчато-реечная прямозубая (гипоидная и винтовая передачи относятся к категории гиперболоидных передач).

Зубчатая передача, оси которой расположены под углом 90°, называется ортогональной.

Достоинство зубчатых передач заключается прежде всего в том, что при одинаковых характеристиках они значительно более компактны, по сравнению с другими видами передач. Кроме того, зубчатые передачи имеют более высокий к. п. д.(до 0,99 в одной ступени), сохраняют постоянство передаточного числа, создают относительно небольшую нагрузку на опоры валов, имеют большую долговечность и надежность работы в широких диапазонах мощностей (до десятков тысяч киловатт), окружных скоростей (до 150 м/с) и передаточных чисел (до нескольких сотен).

Недостатки зубчатых передач: сложность изготовления точных передач, возможность возникновения шума и вибраций при недостаточной точности изготовления и сборки, невозможность бесступенчатого регулирования частоты вращения ведомого вала.

Зубчатые передачи являются наиболее распространенными типами механических передач и находят широкое применение во всех отраслях машиностроения, в частности в металлорежущих станках, автомобилях, тракторах, сельхозмашинах и т. д.; в приборостроении, часовой промышленности и др. Годовое производство зубчатых колес в нашей стране исчисляется сотнями миллионов штук, а габаритные размеры их от долей миллиметра до десяти и более метров. Такое широкое распространение зубчатых передач делает необходимой большую научно-исследовательскую работу по вопросам конструирования и технологии изготовления зубчатых колес и всестороннюю стандартизацию в этой области. В настоящее время стандартизованы термины, определения, обозначения, элементы зубчатых колес и зацеплений, основные параметры передач, расчет геометрии, расчет цилиндрических эвольвентных передач на прочность, инструмент для нарезания зубьев и многое другое.

Основная кинематическая характеристика всякой зубчатой передачи — передаточное число, определяемое по стандарту как отношение числа зубьев колеса к числу зубьев шестерни и обозначаемое и, следовательно,

Определение передаточного отношения остается таким же, как для других механических передач, т. е.

Потери энергии в зубчатых передачах зависят от типа передачи, точности ее изготовления, смазки и складываются из потерь на трение в зацеплении, в опорах валов и (для закрытых передач) потерь на перемешивание и разбрызгивание масла. Потерянная механическая энергия переходит в тепловую, что в некоторых случаях делает необходимым тепловой расчет передачи.

Потери в зацеплении характеризуются коэффициентом, потери в одной паре подшипников — коэффициентом и потери на перемешивание и разбрызгивание масла — коэффициентом. Общий к. п. д. одноступенчатой закрытой передачи

Ориентировочно = 0,96...0,98 (закрытые передачи), = 0,95...0,96 (открытые передачи), = 0,99...0,995 (подшипники качения), = 0,96...0,98 (подшипники скольжения), = 0,98...0,99.

Поверхности взаимодействующих зубьев колес, обеспечивающие заданное передаточное отношение, называются сопряженными. Процесс передачи движения в кинематической паре, образованной зубчатыми колесами, называется зубчатым зацеплением.


Цилиндрическая прямозубая передача

На рис. изображено цилиндрическое колесо с прямыми зубьями. Часть зубчатого колеса, содержащая все зубья, называется венцом; часть колеса, насаживаемая на вал, называется ступицей. Делительная окружность диаметром d делит зуб на две части — головку зуба высотой h a и ножку зуба высотой h f , высота зуба h = h а + h f . Расстояние между одноименными профилями соседних зубьев, измеренное по дуге делительной окружности, называется окружным делительным шагом зубьев и обозначается р. Шаг зубьев слагается из окружной толщины зуба s и ширины впадины е. Длина хорды, соответствующая окружной толщине зуба, называется толщиной по хорде и обозначается. Линейная величина, в раз меньшая окружного шага, называется окружным делительным модулем зубьев, обозначается т и измеряется в миллиметрах (впредь слова «окружной делительный» в терминах будем опускать)

Модуль зубьев — основной параметр зубчатого колеса. Для пары колес, находящихся в зацеплении, модуль должен быть одинаковым. Модули зубьев для цилиндрических и конических передач регламентированы ГОСТ 9563—60*. Значения стандартных модулей от 1 до 14 мм приведены в табл.

Модули, мм

1-й ряд 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12

2-й ряд 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14

Примечание . При назначении модулей 1-й ряд следует предпочитать 2-му.

Все основные параметры зубчатых колес выражают через модули, а именно: шаг зубьев

диаметр делительной окружности

Последняя формула позволяет определить модуль как число миллиметров диаметра делительной окружности, приходящихся на один зуб колеса.

В соответствии со стандартным исходным контуром для цилиндрических зубчатых колес высота головки зуба h a = т, высота ножки зуба h f = 1,25т. Высота зубьев цилиндрических колес

h = h а + h f = 2,25 m .

Диаметр вершин зубьев

d a = m (z + 2),

диаметр впадин

d f = m (z – 2,5).

Расстояние между торцами зубьев колеса называется шириной венца. Контакт пары зубьев цилиндрической прямозубой передачи теоретически происходит по линии, параллельной оси; длина линии контакта равна ширине венца. В процессе работы передачи пара зубьев входит в зацепление сразу по всей длине линии контакта (что сопровождается ударом зубьев), после чего эта линия перемещается по высоте зуба, оставаясь параллельной оси.

Межосевое расстояние цилиндрической передачи с внешним и внутренним зацеплением

называется делительным межосевым расстоянием (знак минус для внутреннего зацепления). Если межосевое расстояние отличается от делительного, то оно обозначается а w .

ГОСТ 1643—81 на допуски для цилиндрических зубчатых колес и передач установлены двенадцать степеней точности, обозначенных цифрами (первая степень — наивысшая). Для каждой степени точности установлены нормы: кинематической точности, плавности работы и контакта зубьев колес и передач.

В процессе изготовления зубчатых передач неизбежны погрешности в шаге, толщине и профиле зубьев, неизбежно радиальное биение венца, колебание межосевого расстояния при беззазорном зацеплении контролируемого и измерительного колес и т. д. Все это создает кинематическую погрешность в углах поворота ведомого колеса, выражаемую линейной величиной, измеряемой по дуге делительной окружности. Кинематическая погрешность определяется как разность между действительным и расчетным углом поворота ведомого колеса. Нормы кинематической точности регламентируют допуски на кинематическую погрешность и ее составляющие за полный оборот колеса. Нормы плавности устанавливают допуски на циклическую (многократно повторяющуюся за один оборот) кинематическую погрешность колеса и ее составляющие. Нормы контакта устанавливают размеры суммарного пятна контакта зубьев передачи (в процентах от размеров зубьев) и допуски на параметры, влияющие на этот контакт.

В машиностроении зубчатые передачи общего назначения изготовляют по 6—9-й степеням точности. Цилиндрические прямозубые колеса 6-й степени точности применяют при окружных скоростях колес до 15 м/с; 1-й степени—до 10 м/с; 8-й степени — до 6 м/с; 9-й — до 2 м/с.

Рассмотрим силы, действующие в зацеплении прямозубой цилиндрической передачи. При изображенном на этом рисунке контакте пары зубьев в полюсе П скольжение (следовательно, и трение) отсутствует, зацепление будет однопарным и силовое взаимодействие колес будет заключаться в передаче по линии давления (нормали NN ) силы нормального давления . Разложим эту силу на две взаимно перпендикулярные составляющие и , называемые соответственно окружным и радиальным усилиями, тогда

где — угол зацепления.

Если известен передаваемый вращающий момент Т и диаметр d делительной окружности, то

(так как = 20°, то ).

Сила , вызывает вращение ведомого колеса и изгибает вал колеса в горизонтальной плоскости, сила г изгибает вал в вертикальной плоскости.


Цилиндрические передачи с косыми и шевронными зубьями

Косозубыми называют колеса, у которых теоретическая делительная линия зуба является частью винтовой линии постоянного шага (теоретической делительной линией называется линия пересечения боковой поверхности зуба с делительной цилиндрической поверхностью). Линия зуба косозубых колес может иметь правое и левое направление винтовой линии. Угол наклона линии зуба обозначается.

Косозубая передача с параллельными осями имеет противоположное направление зубьев ведущего и ведомого колес и относится к категории цилиндрических зубчатых передач, так как начальные поверхности таких зубчатых колес представляют собой боковую поверхность цилиндров. Передача с косозубыми колесами, оси которых скрещиваются, имеет одинаковое направление зубьев обоих колес и называется винтовой зубчатой передачей, которая относится к категории гиперболоидных зубчатых передач, так как начальные поверхности таких зубчатых колес являются частями однополостного гиперболоида вращения; делительные поверхности этих колес — цилиндрические.

У косозубых передач контактные линии расположены наклонно по отношению к линии зуба, поэтому в отличие от прямых косые зубья входят в зацепление не сразу по всей длине, а постепенно, что обеспечивает плавность зацепления и значительное снижение динамических нагрузок и шума при работе передачи. Поэтому косозубые передачи по сравнению с прямозубыми допускают значительно большие предельные окружные скорости колес. Так, например, косозубые колеса 6-й степени точности применяют при окружной скорости до 30 м/с; 7-й степени—до 15 м/с; 8-й степени — до 10 м/с; 9-й — до 4 м/с.

Силу нормального давления в зацеплении косозубых колес можно разложить на три взаимно перпендикулярные составляющие (рис. 7.10,б): окружную силу , радиальную силу и осевую силу , равные:

где Т— передаваемый вращающий момент; — угол зацепления.

Наличие осевой силы — существенный недостаток косозубых передач. Во избежание больших осевых сил в косозубой передаче угол наклона линии зуба ограничивают значениями =8...20°, несмотря на то, что с увеличением увеличивается прочность зубьев, плавность работы передачи, ее нагрузочная способность.

В современных передачах косозубые колеса имеют преимущественное распространение.

Цилиндрическое зубчатое колесо, венец которого по ширине состоит из участков с правыми и левыми зубьями, называется шевронным. Часть венца с зубьями одинакового направления называется полушевроном. Из технологических соображений шевронные колеса изготовляют двух типов: с дорожкой посредине колеса (а) и без дорожки (б). В шевронном колесе осевые силы на полушевронах, направленные в противоположные стороны, взаимно уравновешиваются внутри колеса и на валы и опоры валов не передаются. Поэтому у шевронных колес угол наклона зубьев принимают в пределах = 25...40°, в результате чего повышается прочность зубьев, плавность работы передачи и ее нагрузочная способность. Поэтому шевронные колеса применяют в мощных быстроходных закрытых передачах. Недостатком шевронных колес является высокая трудоемкость и себестоимость изготовления.

Геометрические, кинематические и прочностные расчеты шевронной и косозубой передач аналогичны.

Материалы цилиндрических колес

Материалы для изготовления зубчатых колес в машиностроении— стали, чугуны и пластмассы; в приборостроении зубчатые колеса изготовляют также из латуни, алюминиевых сплавов и др. Выбор материала определяется назначением передачи, условиями ее работы, габаритами колес и даже типом производства (единичное, серийное или массовое) и технологическими соображениями.

Общая современная тенденция в машиностроении — стремление к снижению материалоемкости конструкций, увеличению мощности, быстроходности и долговечности машины. Эти требования приводят к необходимости уменьшения массы, габаритов и повышения нагрузочной способности силовых зубчатых передач. Поэтому основные материалы для изготовления зубчатых колес — термообработанные углеродистые и легированные стали, обеспечивающие высокую объемную прочность зубьев, а также высокую твердость и износостойкость их активных поверхностей.

Критерии работоспособности зубчатых колес и расчетная нагрузка

Под действием сил нормального давления и трения зуб колеса испытывает сложное напряженное состояние, но решающее влияние на его работоспособность оказывают два фактора: контактные напряжения и напряжения изгиба , которые действуют на зуб только во время нахождения его в зацеплении и являются, таким образом, повторно-переменными.

Повторно-переменные напряжения изгиба вызывают появление усталостных трещин у растянутых волокон основания зуба (место концентрации напряжений), которые с течением времени приводят к его поломке (рис. а, б).

Повторно-переменные контактные напряжения и силы трения приводят к усталостному изнашиванию активных поверхностей зубьев. Так как сопротивление усталостному изнашиванию у опережающих поверхностей выше, чем у отстающих, то нагрузочная способность головок зубьев выше, чем ножек. Этим объясняется отслаивание и выкрашивание частиц материала на активной поверхности ножек зубьев (рис. в ) при отсутствии видимых усталостных повреждений головок. Усталостное изнашивание активных поверхностей зубьев характерно для работы закрытых передач.

В открытых передачах и в передачах с плохой (загрязняемой) смазкой усталостное изнашивание опережается абразивным износом активных поверхностей зубьев (рис. г).

В тяжелонагруженных и высокоскоростных передачах в зоне контакта зубьев возникает высокая температура, способствующая разрыву масляной пленки и образованию металлического контакта, в результате чего происходит заедание зубьев (рис. д), которое может завершиться прекращением относительного движения колес передачи.

Итак, критерием работоспособности зубчатых передач является износостойкость активных поверхностей зубьев и их изгибная прочность.

В результате изучения студент должен знать:

Область применения зубчатых передач;
- классификацию зубчатых передач.

4.1.1 Роль и значение зубчатых передач в машиностроении

Зубчатые передачи являются наиболее распространёнными типами механических передач. Они находят широкое применение во всех отраслях машиностроения, в частности в металлорежущих станках, автомобилях, тракторах, сельхозмашинах и т.д., в приборостроении, часовой промышленности и др. Их применяют для передачи мощностей от долей до десятков тысяч киловатт при окружных скоростях до 150 м/с и передаточных числах до нескольких сотен и даже тысяч, с диаметром колёс от долей миллиметра до 6 м и более.

Зубчатая передача относиться к передачам зацеплением с непосредственным контактом пары зубчатых колёс. Меньшее из колёс передачи принято называть шестерней, а большее - колесом. Зубчатая передача предназначена в основном для передачи вращательного движения.

4.1.2 Достоинства зубчатых передач

1) высокая нагрузочная способность;
2) малые габариты;
3) большая надёжность и долговечность (40000 ч);
4) постоянство передаточного числа;
5) высокий КПД (до 0,97…0,98 в одной ступени);
6) простота в эксплуатации.

4.1.3 Недостатки зубчатых передач

1) повышенные требования к точности изготовления и монтажа;
2) шум при больших скоростях;
3) высокая жёсткость, не позволяющая компенсировать динамические нагрузки.

4.1.4. Классификация зубчатых передач

1. По взаимному расположению геометрических осей валов различают передачи:<>br - с параллельными осями - цилиндрические (рис.2.3.1.а-г);
- с пересекающимися осями - конические (рис.2.3.1.д; е);
- со скрещивающимися осями - цилиндрические винтовые (рис.2.3.1.ж);
- конические гипоидные и червячные (рис. 2.3.1.з);
- реечная передача (рис. 2.3.1.и).

Рисунок 2.3.1 Виды зубчатых передач

2. В зависимости от взаимного расположения зубчатых колёс:
- с внешним зацеплением (колёса передач вращаются в противоположных направлениях);
- с внутренним зацеплением (направление вращения колёс совпадают).

3. По расположению зубьев на поверхности колёс различают передачи:
- прямозубые; косозубые; шевронные; с круговым зубом.

4. По форме профиля зуба различают передачи:
- эвольвентные;
- с зацеплением М. Л. Новикова;
- циклоидальные.

5. По окружной скорости различают передачи:
- тихоходные ();
- среднескоростные

Зубчатой передачей называется трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, или колесо и рейка с зубьями, образующими с неподвижным звеном (корпусом) вращательную или поступательную пару.

Зубчатая передача служит для передачи вращательного движения с одного вала на другой и изменения частоты вращения посредством зубчатых колес и реек.

Зубчатое колесо, сидящее на передающем вращение валу, называется веду­щим , а на получающем вращение - ведомым .

Меньшее из двух колес со­пряженной пары называют шестерней ; большее - колесом ;

термин «зубчатое колесо » является общим. Параметрам шестерни приписывают индекс 1, а параметрам колеса – 2.

Основными преимуществами зубчатых передач являются:

Постоянство передаточного числа (отсутствие проскальзывания);

Компактность по сравнению с фрикционными и ременными передачами;

Высокий КПД (до 0,97…0,98 в одной ступени);

Большая долговечность и надежность в работе (например, для редукторов общего применения установлен ресурс ~ 30 000 ч);

Возможность применения в широком диапазоне скоростей (до 150 м/с), мощностей (до десятков тысяч кВт).

Недостатки:

Шум при высоких скоростях;

Невозможность бесступенчатого изменения передаточного числа;

Необходимость высокой точности изготовления и монтажа;

Незащищенность от перегрузок;

Наличие вибраций, которые возникают в результате неточного изготовления и неточной сборки передач.

5.4. Классификация зубчатых передач

По расположению осей валов различают передачи с параллельными (рис. 2.1, а – в, з), с пересекающимися (рис. 2.1, г, д) и перекрещивающимися (рис. 2.1, е, ж) геометрическими осями.

По форме могут быть цилиндрические (рис. 2.1, а – в, з), конические (рис. 2.1, г, д, ж), эллиптические, фигурные зубчатые колеса и колеса с неполным числом зубьев (секторные).

По форме профилей зубьев различают эвольвентные и круговые передачи, а по форме и расположению зубьев – прямые (рис. 2.1, а, г, е, з), косые (рис. 2.1, б), шевронные (рис. 2.1, в) и круговые (рис. 2.1, д, ж).

В зависимости от относительного расположения зубчатых колес передачи могут быть с внешним (рис. 2.1, а) или внутренним (рис. 2.1, з) их зацеплением. Для преобразования вращательного движения в возвратно поступательное и наоборот служит реечная передача (рис. 2.1, е).

Зубчатые передачи эвольвентного профиля широко распространены во всех отраслях машиностроения и приборостроения. Они применяются в исключительно широком диапазоне условий работы. Мощности, передаваемые зубчатыми передачами, изменяются от ничтожно малых (приборы, часовые механизмы) до многих тысяч кВт (редукторы авиационных двигателей). Наибольшее распространение имеют передачи с цилиндрическими колесами, как наиболее простые в изготовлении и эксплуатации, надежные и малогабаритные. Конические, винтовые и червячные передачи применяют лишь в тех случаях, когда это необходимо по условиям компоновки машины.

Эвольвента окружности и ее свойства.

Эволютой называется геометрическое место центров кривизны данной кривой. Данная кривая по отношению к эволюте называется эвольвентой. Согласно определению нормаль к эвольвенте (на которой лежит центр кривизны) является касательной к эволюте. Эвольвенты окружности описываются точками производящей прямой при ее перекатывании по окружности, которую называют основной.

Свойства эвольвенты окружности:

Форма эвольвенты окружности определяется только радиусом основной окружности r b . При эвольвента переходит в прямую линию.

Производящая прямая является нормалью к эвольвенте в рассматриваемой произвольной точке M y . Отрезок нормали в произвольной точке эвольвенты l MyN = равен радиусу ее кривизны и является касательной к основной окружности.

Эвольвента имеет две ветви и точку возврата М 0 , лежащую на основной окружности. Эвольвента не имеет точек внутри основной окружности.

Точки связанные с производящей прямой но не лежащие на ней при перекатывании описывают: точки расположенные выше производящей прямой W - укороченные эвольвенты, точки, расположенные ниже производящей прямой L - удлиненные эвольвенты.

Если производящая прямая задана параметрическими уравнениями х = x (t ), y = y (t ), то параметрические уравнения её эволюты будут следующие:

Эвольвентное зацепление и его свойства.

В зубчатой передаче контактирующие элементы двух профилей выполняются по эвольвентам окружности и образуют, так называемое эвольвентное зацепление. Это зацепление обладает рядом полезных свойств, которые и определяют широкое распространение эвольвентных зубчатых передач в современном машиностроении. Рассмотрим эти свойства.

Свойство 1. Передаточное отношение эвольвентного зацепления определяется только отношением радиусов основных окружностей и является величиной постоянной.

Свойство 2. При изменении межосевого расстояния в эвольвентном зацеплении его передаточное отношение не изменяется.

Свойство 3. При изменении межосевого расстояния в эаольвентном зацеплении величина произведения межосевого расстояния на косинус угла зацепления не изменяется.

Свойство 4. За пределами отрезка линии зацепления N 1 N 2 рассматриваемые ветви эвольвент не имеют общей нормали, т. е. профили выполненные по этим кривым будут не касаться, а пересекаться. Это явление называется интерференцией эвольвент или заклиниванием.

Классификация зубчатых передач приведена на рис 2.2.

Классификация по взаимному расположению осей колес: с па­раллельными осями (цилиндрическая передача - рис. 172, I-IV); с пере­секающимися осями (коническая передача - рис. 172, V, VI); со скрещива­ющимися осями (винтовая передача - рис. 172, VII; червячная передача - рис. 172, VIII).

Рис 2. Классификация зубчатых передач

В зависимости от относительного вращения колес и расположения зубьев различают передачи с внеш­ним и внутренним зацеплением. В первом случае (рис. 2, I-III) враще­ние колес происходит в противоположных направлениях, во втором (рис. 2, IV) - в одном направлении. Реечная передача (рис. 2, IX) служит для преобразования вращательного движения в поступательное.

По форме профиля различают зубья эвольвентные (рис. 2, I, II) и неэвольвентные, например цилиндрическая передача Новикова, зу­бья колес которой очерчены дугами окружности.

В зависимости от расположения теоретичес­кой линии зуба различают колеса с прямыми зубьями (рис. 2, I), косыми (рис. 2, II), шевронными (рис.2, III) и винтовыми (рис. 2, IV). В непрямозубых передачах возрастает плавность работы, уменьшается износ и шум. Благодаря этому непрямозубые передачи большей частью применяют в установках, требующих высоких окружных скоростей и пере­дачи больших мощностей.

По конструктивному оформлению различают закры­тые передачи, размещенные в специальном непроницаемом корпусе и обес­печенные постоянной смазкой из масляной ванны, и открытые, работаю­щие без смазки или периодически смазываемые консистентными смазками (рис. 174).

По величине окруж­ной скорости различают: тихо­ходные передачи (v равной до 3 м/с), среднескоростные (v равной от 3... 15 м/с) и быстроходные (v более 15 м/с)

Практически любой механизм в современной технике отчасти или полностью состоит из различных типов передач. В большинстве случаев в качестве передаточных устройств движения используются именно зубчатые элементы В данной статье будет подробнейшим образом рассмотрена классификация зубчатых передач. Об их разновидностях и особенностях мы и поговорим.

Определение

Итак, с технической точки зрения зубчатой передачей является механизм, который служит для передачи вращения с одного вала на другой и для изменения частоты вращения с помощью реек и колес.

Классификация зубчатых передач гласит, что зубчатое колесо, расположенное на валу, передающем вращение, принято называть ведущим, а принимающее вращение - ведомым. Также тот элемент, который обладает в паре меньшими размерами, называют шестерней, а то, которое большими - колесом.

Сфера применения

Классификация, основные параметры и особенности работы которых будут описаны ниже, вполне обосновано считаются самыми распространёнными деталями в машиностроении и прочих отраслях народного хозяйства. Такая высокая востребованность объясняется возможностью передачи с их помощью мощностей в диапазоне от нескольких долей до нескольких десятков тысяч киловатт. При этом окружные скорости вращения могут составлять до 150 м/с, а передаточные числа колеблются от сотен до тысяч. Диаметр самих колес находится в пределах от считанных миллиметров (иногда даже их долей) до шести и более метров.

Дифференциация

Назначение и классификация зубчатых передач предусматривает их разделение по следующим признакам:

1. По расположению осей колес в пространстве:

  • с параллельными осями (цилиндрические передачи);
  • с пересекающимися осями (конические передачи);
  • со скрещивающимися осями (червячные и

2. По типу относительного вращения колес и расположению зубьев:

3. По форме профиля:

  • эвольвентные зубья;
  • циклоидальные;

4. По расположению теоретической линии зуба:

  • прямозубые колеса;
  • косозубые;
  • шевронные;
  • винтовые (с круговым зубом).

Стоит отметить, что непрямозубые передачи обладают большой плавностью своей работы, в них гораздо меньший износ и шум по сравнению с прямозубыми передачами.

5. По показателю окружной скорости:

  • тихоходные передачи (менее 3 м/с);
  • среднескоростные (от 3 м/с до 15 м/с);
  • быстроходные (свыше 15 м/с).

Градация по областям применения

Классификация зубчатых передач по функциональному назначению предусматривает их деление на:

  • Кинематические (отсчетные) передачи. Их применяют в разнообразных приборах, счетно-решающих механизмах. Главное требование к таким передачам - соблюдение высочайшей кинематической точности, то есть должна быть чёткая согласованность углов поворота как ведущего, так и ведомого колес.
  • Скоростные передачи применяются в редукторах турбомашин, коробках передач автомобилей. Требования: максимально возможная плавность работы.
  • Силовые передачи эксплуатируются в крановых и прокатных механизмах. Они работают при малых скоростях, но при этом передают внушительные крутящие моменты. Главное требование, выдвигаемое к передачам данного типа, - плотный контакт зубьев, находящихся между собой в сопряжении.

Дополнительные критерии

Классификация зубчатых передач по конструктивному оформлению учитывает, что они могут быть открытого и закрытого типа. Открытые передачи могут работать либо без смазки (крайне редко), либо же обрабатываться специальными консистентными смазочными веществами.

Закрытые передачи, в свою очередь, смазываются за счет погружения зубьев в специальное масло, которым заполоняют картер (погружное смазывание). В некоторых случаях предусмотрена централизованная подача состава в картер. При этом регулировка потока смазывающей жидкости осуществляется с помощью специальных дросселей.

В зависимости от того, как меняется частота вращения, зубчатые передачи разделяются на:

  • понижающие (их называют редукторами). В таких передачах передаточное отношение больше или равно единице.
  • Мультипликаторы - передаточное число меньше единицы.

Кстати, бывают как постоянными, так и ступенчато-регулируемыми благодаря перемещению колес непосредственно по валу (например, коробка скоростей).

Положительные качества

Классификация зубчатых передач будет неполной, если не рассмотреть их достоинства. В сравнении с другими типами передач зубчатые характеризуются:

  • Технологичностью.
  • Постоянством передаточного отношения.
  • Высокой нагрузочной способностью (до 50000 кВт).
  • Внушительным коэффициентом полезного действия (до 0,99).
  • Малыми габаритными размерами по сравнению с прочими передачами при одинаковых условиях.
  • Большой надежностью во время работы.
  • Простотой обслуживания.

Отрицательные качества

Что касается недостатков зубчатых передач, то в их числе значатся:

  • Отсутствие возможности изменять передаточное число бесступенчато.
  • Точность изготовления и монтажа должна быть на высоком уровне.
  • Возникновение шума при больших скоростях работы.
  • Неудовлетворительные амортизирующие свойства.
  • Большие габариты в случаях, когда между осями ведомого и ведущего валов внушительное расстояние.
  • Нарезание зубьев требует наличия специального оборудования и инструмента.
  • Неспособность к компенсации динамических нагрузок по причине высокой жестокости.
  • Отсутствие предохранительной функции. Зубчатая передача не способна защитить машину или механизм от перегрузки.

Также зубчатые передачи (достоинства и недостатки, классификация и виды которых указаны выше) нерационально используют свои зубья, что проявляется в одновременной работе не более двух зубьев каждого из колес, находящихся в сопряжении.

Деформация зубьев колес

Правильная проектировка и эксплуатация зубчатой передачи проявляется в отсутствии сильного шума и перегрева во время работы. Если эти два указанных критерия все же имеют несоответствия, то это вполне может привести к разрушениям зубьев колес. Классификация зубчатых передач по эксплуатационному назначению также вносит свои корректировки в работу передачи, однако в целом виды разрушений зубьев бывают следующие:

  • Пластическая деформация рабочих поверхностей.
  • Поломка.
  • Заедание.
  • Изнашивание.
  • Выкрашивание.

В тех случаях, когда зубья ломаются, зачастую происходит не только поломка передачи, но и повреждение различных смежных узлов, деталей (например, разрушаются подшипники, валы). Это происходит по причине заклинивающего действия отломившихся кусочков.

Довольно часто зубья ломаются по причине своей «усталости», которая появляется как следствие возникновения и прогрессивного развития трещины. Такой вид поломки более всего характерен для закрытых передач.

Истирание зубьев чаще всего наблюдается в открытых передачах, что объясняется проникновением в зону зацепления разнообразных частиц металла, грязи, пыли (абразивный износ). Также причиной может служить плохая смазка, поэтому от данного не застрахованы и закрытые передачи.

Производство колес

Важно знать, что зубчатые передачи, достоинства и недостатки, классификация которых зависят от их технологических и физических свойств, изготавливаются из различных материалов.

Чаще всего на практике применяются такие:

  • обыкновенного качества (Ст6, Ст5).
  • Высококачественные марки стали.
  • Легированные марки сталей.
  • Серый и высококачественный чугун.
  • Некоторые неметаллические материалы (бакелит, текстолит).

Наибольшее распространение получили передачи с зубчатыми колесами из стали, что объясняется оптимальным сочетанием прочности, надёжности и массы. Такой материал идеально подходит для высоконагруженных передач.

В свою очередь, серый чугун используется для колес, работающих нечасто, а также тихоходных открытых передач. Чугун хорош тем, что зубья колес на его основе не слишком требовательны к смазке и хорошо притираются друг к другу.

Пластмассовые зубчатые колеса производят для механизмов, где требуется максимальная бесшумность работы высокоскоростной передачи, при этом не нужна высокая точность изготовления.

Твердость и термическая обработка

Зубчатые передачи, классификация, применение которых находятся также в зависимости от несущей способности, в обязательном порядке проходят термообработку.

Зубчатые колеса из стали условно делят на две группы:

  • Колеса с твердостью зубьев менее 350 НВ. Такой показатель формируется благодаря нормализации или улучшению стали. Непосредственно зубья нарезают уже после термической обработки.
  • Колеса, твердость которых превышает 350 НВ. Такую твёрдость обеспечивает химико-термическое упрочнение: цементация, азотирование, цианирование, поверхностная закалка с помощью токов высокой частоты.

Смазывание зубчатых колес

Классификация зубчатых передач по расположению зубьев будет неполной, если не рассмотреть вопрос смазывания зубчатого зацепления. Сам по себе процесс смазки ориентирован на понижение скорости износа зубьев, отвод тепла и мелких абразивных частиц, повышение КПД всей передачи. Благодаря применению качественных смазочных материалов повышается сопротивляемость колес к заеданию. В роли смазки могут выступать пластичные, жидкие и твердые материалы.

Пластичная смазка чаще всего применяется в открытых передачах, которые работают с температурой не более +120 градусов. Твёрдая смазка эксплуатируется также в открытых передачах, но в тех, рабочая температура которых превышает 100 градусов по Цельсию. Самой востребованной смазкой является жидкая. Наибольшую популярность получили нефтяные масла. Что касается синтетических материалов смазки, то их применяют лишь в особых случаях, поскольку цена их достаточно высока.

Обозначение жидких масел следующее:

  • Индустриальное масло - литера И.
  • Для использования в гидравлических системах - Г.
  • Для тяжелонагруженных передач - Т.
  • Масло, имеющее антикоррозионные, антиокислительные, противоизносные присадки, - С.
  • Масло, не имеющее каких-либо присадок, - А.

Конические зубчатые колеса

Классификация конических зубчатых передач в упрощенном варианте имеет следующий вид:

  • Колеса конические зубчатые с прямыми зубьями.
  • С тангенциальными зубьями.
  • С криволинейными зубьями.
  • С круговыми зубьями.
  • С линией зубьев в виде эвольвенты.

Прямозубые конические колеса чаще всего применяются в открытых передачах, а вот элементы с круговыми зубьями задействованы в редукторах.

Характеристики и обозначения

Основные параметры, на которые опирается классификация зубчатых передач, таковы:

  • Число зубьев - Z.
  • Межосевое расстояние - a.
  • Ширина венца колеса - b.
  • Радиальный зазор - с.
  • Высота ножки зуба - ha.
  • Высота зуба - h.
  • Делительный диаметр - d.
  • Начальный диаметр - dw.
  • Диаметр впадин зубьев - dr.
  • Диаметр вершин зубьев - da.

Производство зубчатых передач

Зубчатые колеса производятся на автоматических линиях. Эти узкоспециализированные линии делятся на короткие и комплексные. Первая группа связана лишь с нарезанием и отделкой зубчатых колес. Вторая представляет собой совокупность станков самого различного предназначения, которые обеспечивают полноценное изготовление зубчатых колес. В таких линиях применяются полуавтоматические станки для зубообработки, дополнительно укомплектованные загрузочно-разгрузочными и прочими устройствами автоматизации.

В технологических линиях производства колес между производственными станками чаще всего применяют гибкие транспортные связи в виде ленточных и цепных транспортеров, а также подвижных передаточных тележек, которые исключают возникновение забоин и прочих дефектов.

  • 7. Основные геометрические параметры эвольвентных зубчатых колес.
  • 8. Кинематические и силовые соотношения прямозубых эвольвентных зубчатых колес.
  • 9. Виды напряжений, по которым проводится проектировочный и проверочный расчет зубчатых колес.
  • 10. Общие сведения о косозубых цилиндрических зубчатых передачах.
  • 11. Понятие об эквивалентном колесе и его параметры.
  • 12. Силы, действующие в косозубой цилиндрической передаче.
  • 13. Общие сведения о конических зубчатых передачах.
  • 14. Ортогональные прямозубые конические зубчатые передачи.
  • 15. Основные сведения о передаче Новикова.
  • 16. Планетарные передачи.
  • 17. Кинематика планетарных передач. Инематика.
  • 18. Условия подбора чисел зубьев планетарных передач.
  • 19. Основные сведения о волновых передачах.
  • 20. Червячные передачи: общие сведения, достоинства и недостатки.
  • 12.2. Достоинства и недостатки червячных передач
  • 21. Кинематические и силовые соотношения архимедовых червячных передач.
  • 22. Критерии работоспособности и особенности расчета червячных передач.
  • 23. Выбор материалов червяков и червячных колес.
  • 24. Охлаждение и смазка червячных редукторов.
  • 25. Общие сведения о фрикционных передачах и вариаторах. Общие сведения
  • Классификация
  • Достоинства и недостатки
  • 26. Основные сведения о передаче «винт-гайка» скольжения.
  • 27. Шарико-винтовые передачи (швп).
  • 28. Основные факторы, определяющие качество фрикционных передач.
  • 29. Ременные передачи: общие сведения, классификация, виды ремней.
  • 14.2. Классификация передач
  • 14.3. Достоинства и недостатки ременных передач трением
  • 30. Силы в ремнях ременных передачах.
  • 31. Напряжения в ремнях ременных передачах.
  • 32. Основные сведения о цепных передачах.
  • 13.2. Достоинства и недостатки цепных передач
  • 13.3 Типы цепей
  • 33. Кинематика и динамика цепной передачи.
  • 34. Критерии работоспособности и расчет цепной передачи.
  • 36. Ориентировочный расчет валов и осей.
  • 37. Проверочный расчет валов и осей.
  • 38. Подшипники скольжения.
  • 39. Режимы трения подшипников скольжения.
  • 40. Расчет подшипников скольжения при полужидкостном трении.
  • 41. Расчет подшипников скольжения при жидкостном трении.
  • 42. Назначение и классификация подшипников качения.
  • 43. Статическая грузоподъемность. Проверка подшипников качения по статической грузоподъемности. Проверка и подбор подшипников по статической грузоподъемности.
  • 44. Динамическая грузоподъемность. Проверка подшипников качения по динамической грузоподъемности.
  • 45. Назначение и классификация муфт.
  • 46. Классификация соединений.
  • 47. Основные сведения о резьбовых соединениях.
  • 48. Классификация резьб.
  • 49. Виды нагружений болтовых соединений.
  • 1. Для соединений стальных и чугунных деталей, без упругих прокладок = 0,2 – 0,3.
  • 2.Для соединений стальных и чугунных деталей с упругими прокладками (асбест, поронит, резина и др.) = 0,4 – 0,5.
  • 3. В уточненных расчетах определяют значения д и б, а затем.
  • 50. Основные понятия о заклепочном соединении.
  • 51. Область применения, преимущества и недостатки сварных соединений.
  • 52. Шпоночные и шлицевые соединения.
  • 4. Основные виды механических передач.

    Механической передачей называют устройство для передачи механического движения от двигателя к исполнительным органам машины. Может осуществляться с изменением значения и направления скорости движения, с преобразованием вида движения. Необходимость применения таких устройств обусловлена нецелесообразностью, а иногда и невозможностью непосредственного соединения рабочего органа машины с валом двигателя. Механизмы вращательного движения позволяют осуществить непрерывное и равномерное движение с наименьшими потерями энергии на преодоление трения и наименьшими инерционными нагрузками.

    Механические передачи вращательного движения делятся:

    По способу передачи движения от ведущего звена к ведомому на передачи трением (фрикционные, ременные) и зацеплением (цепные, зубчатые, червячные);

    По соотношению скоростей ведущего и ведомого звеньев на замедляющие (редукторы) и ускоряющие (мультипликаторы);

    По взаимному расположению осей ведущего и ведомого валов на передачи с параллельными , пресекающимися и перекрещивающимися осями валов.

    Зубчатые передачи

    Зубчатой передачей называется трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, или колесо и рейка с зубьями, образующими с неподвижным звеном (корпусом) вращательную или поступательную пару.

    Зубчатая передача состоит из двух колес, посредством которых они сцепляются между собой. Зубчатое колесо с меньшим числом зубьев называют шестерней , с большим числом зубьев – колесом .

    Планетарные передачи

    Планетарными называются передачи, содержащие зубчатые колеса с перемещающимися осями. Передача состоит из центрального колеса с наружными зубьями, центрального колеса с внутренними зубьями , водила и сателлитов. Сателлиты вращаются вокруг своих осей и вместе с осью вокруг центрального колеса, т.е. совершают движение, подобное движению планет.

    Червячные передачи

    Червячная передача применяется для передачи вращения от одного вала к другому, когда оси валов перекрещиваются. Угол перекрещивания в большинстве случаев равен 90º. Наиболее распространенная червячная передача состоит из так называемого архимедова червяка , т.е. винта, имеющего трапецеидальную резьбу с углом профиля в осевом сечении, равным двойному углу зацепления (2α = 40), и червячного колеса .

    Волновые механические передачи

    Волновая передача основана на принципе преобразования параметров движения за счет волнового деформирования гибкого звена механизма.

    Волновые зубчатые передачи являются разновидностью планетарных передач, у которых одно из колес гибкое.

    Фрикционные передачи

    Передачи, работа которых основана на использовании сил трения, возникающих между рабочими поверхностями двух прижатых друг к другу тел вращения, называют фрикционными передачами .

    Ременные передачи

    Ременная передача состоит из двух шкивов, закрепленных на валах, и охватывающего их ремня. Ремень надет на шкивы с определенным натяжением, обеспечивающим трение между ремнем и шкивами, достаточное для передачи мощности от ведущего шкива к ведомому.

    В зависимости от формы поперечного сечения ремня различают: плоскоременную, клиноременную и круглоременную

    Цепные передачи

    Цепная передача состоит из двух колес с зубьями (звездочек) и охватывающей их цепи. Наиболее распространены передачи с втулочно-роликовой цепью и зубчатой цепью Цепные передачи применяются для передачи средних мощностей (не более 150 кВт) между параллельными валами в случаях, когда межосевые расстояния велики для зубчатых передач.

    Передача винт-гайка

    Передача винт-гайка служит для преобразования вращательного движения в поступательное. Широкое применение таких передач определяется тем, что при простой и компактной конструкции удается осуществить медленные и точные перемещения.

    В авиастроении передача винт-гайка используется в механизмах управления самолетом: для перемещения взлетно-посадочных закрылков, для управления триммерами, поворотными стабилизаторами и др.

    К преимуществам передачи относятся простота и компактность конструкции, большой выигрыш в силе, точность перемещений.

    Недостатком передачи является большая потеря на трение и связанный с этим малый КПД.

    Кулачковые механизмы

    Кулачковые механизмы (рис. 2.26) по широте применения уступают только зубчатым передачам. Их используют в станках и прессах, двигателях внутреннего сгорания, машинах текстильной, пищевой и полиграфической промышленности. В этих машинах они выполняют функции подвода и отвода инструмента, подачи и зажима материала в станках, выталкивания, поворота, перемещения изделий и др.

    Виды механических передач и передаточных миханизмов

    Вращательное движение в машинах передается при помощи фрикционной, зубчатой, ременной, цепной и червячной передач. Будем условно называть пару, осуществляющую вращательное движение, колесами. Колесо, от которого передается вращение, принято называть ведущим, а колесо, получающее движение - ведомым.

    Всякое вращательное движение можно измерить оборотами в минуту. Зная число оборотов в минуту ведущего колеса, мы можем определить число оборотов ведомого колеса. Число оборотов ведомого колеса зависит от соотношения диаметров соединенных колес. Если диаметры обоих колес будут одинаковы, то и колеса будут крутиться с одинаковой скоростью. Если диаметр ведомого колеса будет больше ведущего, то ведомое колесо станет крутиться медленнее, и наоборот, если его диаметр будет меньше, оно будет делать больше оборотов. Число оборотов ведомого колеса во столько раз меньше числа оборотов ведущего, во сколько раз его диаметр больше диаметра ведущего колеса.

    Зависимость числа оборотов от диаметров колес.

    В технике при конструировании машин часто приходится определять диаметры колес и число их оборотов. Эти расчеты можно делать на основе простых арифметических пропорций. Например, если мы условно обозначим диаметр ведущего колеса через Д 1 , диаметр ведомого через Д 2 , число оборотов ведущего колеса через n 1 , число оборотов ведомого колеса через n 2 , то все эти величины выражаются простым соотношением:

    Д 2 /Д 1 = n 1 /n 2

    Если нам известны три величины, то, подставив их в формулу, мы легко найдем четвертую, неизвестную величину.

    В технике часто приходится употреблять выражения: "передаточное число " и "передаточное отношение ". Передаточным числом называют отношение числа оборотов ведущего колеса (вала) к числу оборотов ведомого, а передаточным отношением - отношение между числами оборотов колес независимо от того, какое из них ведущее. Математически передаточное число пишется так:

    n 1 /n 2 = i или Д 2 /Д 1 = i

    где i - передаточное число. Передаточное число - величина отвлеченная и размерности не имеет. Передаточное число может быть любым - как целым, так и дробным.

    Фрикционная передача

    При фрикционной передаче вращение от одного колеса к другому передается при помощи силы трения. Оба колеса прижимаются друг к другу с некоторой силой и вследствие возникающего между ними трения вращают одно другое. Недостаток фрикционной передачи: большая сила, давящая на колеса, вызывающая дополнительное трение, а следовательно, требующая и дополнительную силу для вращения. Кроме того, колеса при вращении, как бы они ни были прижаты друг к другу дают проскальзывание. Поэтому там, где требуется точное соотношение чисел оборотов колес, фрикционная передача себя не оправдывает.

    Достоинства фрикционной передачи:
    Простота изготовления тел качения;
    Равномерность вращения и бесшумность работы;
    Возможность бесступенчатого регулирования частоты вращения и включения/выключения передачи на ходу;
    За счет возможностей проскальзывания передача обладает предохранительными свойствами.

    Недостатки фрикционной передачи:
    Проскальзывание, ведущее к непостоянству передаточного числа и потери энергии;
    Необходимость обеспечения прижима.

    Применение фрикционной передачи:
    В машиностроении чаще всего применяют бесступенчатые фрикционные передачи для бесступенчатого регулирования скорости.


    Фрикционные передачи:
    а - лобовая передача, б - угловая передача, в - цилиндрическая передача.

    В самодельных устройствах фрикционная передача может быть широко использована. Особенно приемлемы передачи цилиндрическая и лобовая. Колеса для передач можно делать деревянные. Для лучшего сцепления, рабочие поверхности колес следует "обшить" слоем мягкой резины толщиной в 2-3 мм. Резину можно или прибить мелкими гвоздиками, или приклеить клеем.

    Зубчатая передача

    В зубчатых передачах вращение от одного колеса к другому передается при помощи зубьев. Зубчатые колеса вращаются намного легче фрикционных. Объясняется это тем, что здесь нажима колеса на колесо совсем не требуется. Для правильного зацепления и легкой работы колес профиль зубца делают по определенной кривой, называемой эвольвентой.


    v передавать вращательное движение;

    v изменять число об/мин;

    v увеличивать или уменьшать силу вращения;

    v менять направление вращения.

    В зависимости от формы колес и их взаимного расположения различают следующие виды зубчатых передач : цилиндрическая, коническая, червячная, реечная, планетарная.

    Цилиндрическая передача состоит из двух или нескольких цилиндрических колес установленных на параллельных валах.

    Рис. 215 Цилиндрическая передача

    Коническая передача состоит из двух конических колес, находящихся на двух валах, оси которых пересекаются. Угол пересечения может быть любой, но обычно он равен 90º.

    Рис. 216 Коническая передача

    Червячная передача (зубчато-винтовая передача) - механическая передача, осуществляющаяся зацеплением червяка и сопряжённого с ним червячного колеса. Червячная передача применяется для перекрещивающихся, но не пересекающихся валов. Червячная передача состоит из винта (червяка) и зубчатого колеса.


    Рис. 217 Червячная передача

    Червячная передача обладает рядом уникальных свойств. Во-первых, она может быть использована только в качестве ведущего зубчатого колеса, и никак не может быть ведомой шестерней. Это очень удобно для механизмов, которые нужны для поднятия и удержания груза без нагрузки на двигатель. Существует много возможных применений этого свойства червячной передачи, например, во многих видах подъемных кранов и погрузчиков, железнодорожных барьеров, разводных мостах, лебедках. Очень широко червячная передача LEGO используется в конструкции захвата для робота-манипулятора.

    Во-вторых, характерной особенностью червячной передачи является то, что она имеет большое передаточное отношение. Поэтому червячные передачи используются как понижающее всякий раз, когда есть очень высокий крутящий момент.

    Вывод: червячная передача имеет ряд преимуществ:

    v Занимает мало места.

    v Имеет свойство самоторможения.

    v Во много раз снижает число об/мин.

    v Увеличивает силу привода.

    v Изменяет направление вращательного движения на 90°.

    Реечная передача – механическая передача, преобразующая вращательное движение зубчатого колеса в поступательное движение рейки и наоборот. Рейку можно рассматривать как вытянутую в прямую линию окружность большого зубчатого колеса.


    Следует отметить, что существует в наборах LEGO коронная шестерня и шестерни с внутренним зацеплением.

    Коронная шестерня - это особый тип шестерен, их зубья находятся на боковой поверхности. Такая шестерня работает, как правило, в паре с прямозубой шестерней.

    Рис. 220 Соединения короной шестерни и цилиндрических колес с 8 и 24 зубьями

    Шестерни с внутренним зацеплением имеют зубья, нарезанные с внутренней стороны . При их использовании происходит одностороннее вращение ведущей и ведомой шестерен. В данной зубчатой передаче меньше затрат на трение, а значит выше коэффициент полезного действия*. Применяются зубчатые колеса с внутренним зацеплением в ограниченных по габаритам механизмах, в планетарных передачах, в приводе робота манипулятора.

    Рис. 221 Шестерня с внутренним зацеплением

    Особенность шестерни с внутренним зацеплением LEGO - наличие зубьев на внешней стороне , поэтому ее можно использовать в передачах как цилиндрическое колесо с 56 зубьями.

    Рис. 222 Способы соединения колеса с внутренним зацеплением с цилиндрической шестерней, колесом с короной и «червяком»

    Рис. 223 Способ соединения колеса с внутренним зацеплением с мотором

    Планетарная передача

    Планетарная передача (дифференциальная передача) - механическая система, состоящая из нескольких планетарных зубчатых колёс (шестерён), вращающихся вокруг центральной, солнечной, шестерни. Обычно планетарные шестерни фиксируются вместе с помощью водила. Планетарная передача может также включать дополнительную внешнюю кольцевую (коронную) шестерню, имеющую внутреннее зацепление с планетарными шестернями.

    Такая передача нашла широкое применение, например, она используется в кухонной технике или автоматической коробке передач автомобиля.

    Основными элементами планетарной передачи можно считать следующие:

    v Солнечная шестерня: находится в центре;

    v Водило: жёстко фиксирует друг относительно друга оси нескольких планетарных шестерён (сателлитов) одинакового размера, находящихся в зацеплении с солнечной шестерней;

    v Кольцевая шестерня: внешнее зубчатое колесо , имеющее внутреннее зацепление с планетарными шестернями.

    Рис. 224 Пример планетарной передачи: водило неподвижно, солнце ведущее, корона ведомая

    В планетарной передаче крутящий момент передается с помощью каких-либо (в зависимости от выбранной передачи) двух ее элементов, из которых один является ведущим, второй - ведомым. Третий элемент при этом неподвижен (таблица 8).

    Таблица 8. Элементы планетарной передачи

    Неподвижный

    Ведущий

    Ведомый

    Передача

    Корона

    Понижающая

    Повышающая

    Солнце

    Понижающая

    Повышающая

    Водило

    Реверс, понижающая

    Реверс, повышающая

    Реверс - изменение хода механизма на обратный, противоположный.

    Рис. 225 Пример конструкции планетарной передачи: корона неподвижна, водило ведущее, солнце ведомое

    Механические передачи с гибкими элементами

    Для передачи движения между сравнительно далеко расположенными друг от друга валами применяют механизмы, в которых усилие от ведущего звена к ведомому передается с помощью гибких звеньев. В качестве гибких звеньев применяются ремни, шнуры, цепи различных конструкций.

    Передачи с гибкими звеньями могут обеспечивать постоянное и переменное передаточное отношение со ступенчатым или плавным изменением его величины.

    Ременная передача

    Ременная передача состоит из двух шкивов, закрепленных на валах, и ремня, охватывающего эти шкивы. Нагрузки передается за счет сил трения, возникающих между шкивами и ремнем вследствие натяжения последнего. Ременная передача мало чувствительна к взаимному положению ведущего и ведомого валов. Их можно даже повернуть под прямым углом друг к другу или ремень надеть в виде перекрещенной петли, и тогда направление вращения ведомого вала измениться.

    Рис. 226 Ременная передача

    Цепная передача

    Рис. 227 Цепная передача

    Фрикционная передача

    Рис. 228 Фрикционная передача

    При фрикционной передаче вращение от одного колеса к другому передается при помощи силы трения. Оба колеса прижимаются друг к другу с некоторой силой и вследствие возникающего между ними трения одно вращает другое.

    Фрикционные передачи широко применяются в машинах. Недостаток фрикционной передачи: большая сила, давящая на колеса, вызывающая дополнительное трение в машине, а, следовательно, требующая и дополнительную силу для вращения.

    Кроме того, колеса при вращении, как бы они ни были прижаты друг к другу, дают проскальзывание. Поэтому там, где требуется точное соотношение чисел оборотов колес, фрикционная передача себя не оправдывает.

    Проект «Автоматический шлагбаум»:

    1. Сконструируйте модель автоматического шлагбаума.

    Технические условия:

    б) в конструкции используется червячная передача;

    в) автоматическое поднимание и опускание стрелы шлагбаума должно происходить при помощи ультразвукового датчика.

    4. В рамках робототехнического кружка изготовьте автоматический шлагбаум.

    6. В рабочей тетради составьте описание автоматического шлагбаума.

    Проект «Поворотная платформа»:

    1. Сконструируйте модель поворотной платформы.

    Технические условия:

    б) в конструкции используется шестерня с внутренним зацеплением;

    в) автоматический поворот платформы происходит с помощью датчика касания (датчика освещенности).

    4. В рамках робототехнического кружка изготовьте поворотную платформу.

    6. В рабочей тетради составьте описание поворотной платформы.

    Проект «Раздвижные автоматические двери»:

    1. Сконструируйте модель раздвижных автоматических дверей.

    Технические условия:

    а) в модель входит один сервомотор, микроконтроллер NXT;

    б) в конструкции используется реечная передача;

    в) автоматическое открывание дверей происходит при помощи ультразвукового датчика (датчика освещенности).

    2. В рабочей тетради выполните эскиз модели.

    3. Обсудите проект с учителем.

    4. В рамках робототехнического кружка изготовьте модель раздвижных автоматических дверей.

    5. С помощью языка программирования NXT-G напишите программу для управления моделью.

    6. В рабочей тетради составьте описание модели раздвижных автоматических дверей.